Science Reference

Electron configuration

In atomic physics and quantum chemistry, the electron configuration is the arrangement of electrons in an atom, molecule, or other physical structure (e.g., a crystal).

Like other elementary particles, the electron is subject to the laws of quantum mechanics, and exhibits both particle-like and wave-like nature.

Formally, the quantum state of a particular electron is defined by its wavefunction, a complex-valued function of space and time.

According to the Copenhagen interpretation of quantum mechanics, the position of a particular electron is not well defined until an act of measurement causes it to be detected.

The probability that the act of measurement will detect the electron at a particular point in space is proportional to the square of the absolute value of the wavefunction at that point. Electrons are able to move from one energy level to another by emission or absorption of a quantum of energy, in the form of a photon.

Because of the Pauli exclusion principle, no more than two electrons may exist in a given atomic orbital; therefore an electron may only leap to another orbital if there is a vacancy there. Knowledge of the electron configuration of different atoms is useful in understanding the structure of the periodic table of elements.

The concept is also useful for describing the chemical bonds that hold atoms together.

In bulk materials this same idea helps explain the peculiar properties of lasers and semiconductors.

For more information about the topic Electron configuration, read the full article at Wikipedia.org, or see the following related articles:

Note: This page refers to an article that is licensed under the GNU Free Documentation License. It uses material from the article Electron configuration at Wikipedia.org. See the Wikipedia copyright page for more details.

Recommend this page on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

|

Search ScienceDaily

Number of stories in archives: 140,656

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?