Featured Research

from universities, journals, and other organizations

Moss Project Shows How Some Plants Grow Without Gravity

Date:
February 1, 2005
Source:
Ohio State University
Summary:
Experiments on moss grown aboard two Space Shuttle missions showed the plants didn't behave as scientists expected them to in the near-absence of gravity. The common roof moss (Ceratodon purpureus) grew in striking, clockwise spirals, according to Fred Sack. He is the study's lead investigator and professor of plant cellular and molecular biology at Ohio State University, Columbus, Ohio.

The image above shows the the spiral formation of a moss culture gown during the 2003 Space Shuttle missions. Researchers suspect that those spirals resulted from a residual spacing mechanism intended to control colony growth and the distribution of branches, a mechanism that is normally suppressed by the stronger influence of gravity on earth.
Credit: Image courtesy of Volker Kern

Experiments on moss grown aboard two Space Shuttle missions showed the plants didn't behave as scientists expected them to in the near-absence of gravity.

Related Articles


The common roof moss (Ceratodon purpureus) grew in striking, clockwise spirals, according to Fred Sack. He is the study's lead investigator and professor of plant cellular and molecular biology at Ohio State University, Columbus, Ohio.

The researchers expected random, unorganized growth as seen with every other type of plant flown in space. "We don't know why moss grew non-randomly in space, but we found distinct spiral patterns," Sack said. The findings are reported in the online edition of the journal, Planta.

Common roof moss is a relatively primitive plant in which certain cells, called tip cells, are guided by gravity in their growth. This gravity response is only seen when moss is kept in the dark, as light overrides gravity's effect.

Moss originates from chains of cells with growth only taking place in the tip-most cell of a chain. When grown in the dark, the tip cells grow away from gravity's pull - this gets the cells out of the soil and into the light.

"The way these tip cells respond to gravity is exceptional," Sack said. "In most plants, gravity guides the growth of roots or stems, which are made up of many cells. But in moss, it is just a single cell that both senses and responds to gravity," he added.

Common roof moss was grown in Petri dishes in lockers aboard Shuttle missions in 1997 and 2003. The second mission was the Space Shuttle Columbia (STS-107), which broke apart during reentry on Feb. 1, 2003. Most of the hardware holding the plants was recovered, and 11 of the recovered moss cultures were usable.

Astronauts followed similar experimental procedures on both flights. They chemically "fixed" the moss cultures before each mission reentered Earth's atmosphere. This process stopped all growth in the moss, capturing their state during flight.

Control studies conducted at NASA's Kennedy Space Center (KSC) in Florida used hardware and procedures similar to those used aboard each flight. However, these moss cultures were either kept stationary or turned at a slow spin on a clinostat - a machine resembling a record turntable placed on its edge. It is used to negate the effects of gravity.

On Earth, gravity controls the direction of moss growth thoroughly; it grows straight away from the center of the Earth, just like shoots in a field of corn. In space, scientists expected the cells to grow erratically in all directions, since there was no gravity cue.

Instead, the moss grew non-randomly in two successive types of patterns: The first pattern resembled spokes in a wheel. The cells grew outward from where they were originally sown. Later, the tips of the filaments grew in arcs, so the entire culture showed clockwise spirals. The same patterns were found when the moss was grown on a clinostat on the ground.

"The results are unusual, as this is the first time researchers report seeing this kind of plant growth response in space." Sack said.

"Unlike the ordered response of moss cells in space, other types of plants grow randomly," he said. "So in moss, gravity must normally mask a default growth pattern. This pattern is only revealed when the gravity signal is lost or disrupted." Sack added.

Sack conducted the study with Volker Kern, who is now at KSC. Kern was at Ohio State during the study; David Reed, with Bionetics Corp. based at KSC; former Ohio State colleagues Jeanette Nadeau, Jochen Schwuchow and Alexander Skripnikov; and with Jessica Lucas, a graduate student in Sack's lab.

Support for this research came from the Exploration Systems Mission Directorate of the National Aeronautics and Space Administration.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Moss Project Shows How Some Plants Grow Without Gravity." ScienceDaily. ScienceDaily, 1 February 2005. <www.sciencedaily.com/releases/2005/02/050201071728.htm>.
Ohio State University. (2005, February 1). Moss Project Shows How Some Plants Grow Without Gravity. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2005/02/050201071728.htm
Ohio State University. "Moss Project Shows How Some Plants Grow Without Gravity." ScienceDaily. www.sciencedaily.com/releases/2005/02/050201071728.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Space & Time News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Geminids Meteor Shower Lights Up Skies in China

Geminids Meteor Shower Lights Up Skies in China

AFP (Dec. 16, 2014) The Geminids meteor shower lights up the skies over the Changbai Mountains in northeast China. Duration: 01:03 Video provided by AFP
Powered by NewsLook.com
Raw: Defense Satellite Launches from California

Raw: Defense Satellite Launches from California

AP (Dec. 13, 2014) A U.S. defense satellite launched from California's central coast on Friday after weather delays caused by a major storm that drenched the state. (Dec. 13) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins