Featured Research

from universities, journals, and other organizations

New water-splitting catalyst: Researchers expand list of potential electrode materials that could be used to store energy

Date:
May 13, 2010
Source:
Massachusetts Institute of Technology
Summary:
Researchers have found yet another formulation, based on inexpensive and widely available materials, that can efficiently catalyze the splitting of water molecules using electricity. This could ultimately form the basis for new storage systems that would allow buildings to be completely independent and self-sustaining in terms of energy: The systems would use energy from intermittent sources like sunlight or wind to create hydrogen fuel, which could then be used in fuel cells or other devices to produce electricity or transportation fuels as needed.

Daniel Nocera.
Credit: Photo by Donna Coveney/MIT

Expanding on work published two years ago, MIT's Daniel Nocera and his associates have found yet another formulation, based on inexpensive and widely available materials, that can efficiently catalyze the splitting of water molecules using electricity. This could ultimately form the basis for new storage systems that would allow buildings to be completely independent and self-sustaining in terms of energy: The systems would use energy from intermittent sources like sunlight or wind to create hydrogen fuel, which could then be used in fuel cells or other devices to produce electricity or transportation fuels as needed.

Nocera, the Henry Dreyfus Professor of Energy and Professor of Chemistry, says that solar energy is the only feasible long-term way of meeting the world's ever-increasing needs for energy, and that storage technology will be the key enabling factor to make sunlight practical as a dominant source of energy. He has focused his research on the development of less-expensive, more-durable materials to use as the electrodes in devices that use electricity to separate the hydrogen and oxygen atoms in water molecules. By doing so, he aims to imitate the process of photosynthesis, by which plants harvest sunlight and convert the energy into chemical form.

Nocera pictures small-scale systems in which rooftop solar panels would provide electricity to a home, and any excess would go to an electrolyzer -- a device for splitting water molecules -- to produce hydrogen, which would be stored in tanks. When more energy was needed, the hydrogen would be fed to a fuel cell, where it would combine with oxygen from the air to form water, and generate electricity at the same time.

An electrolyzer uses two different electrodes, one of which releases the oxygen atoms and the other the hydrogen atoms. Although it is the hydrogen that would provide a storable source of energy, it is the oxygen side that is more difficult, so that's where he and many other research groups have concentrated their efforts. In a paper in Science in 2008, Nocera reported the discovery of a durable and low-cost material for the oxygen-producing electrode based on the element cobalt.

Now, in research being reported in the journal Proceedings of the National Academy of Science (PNAS), Nocera, along with postdoctoral researcher Mircea Dincă and graduate student Yogesh Surendranath, report the discovery of yet another material that can also efficiently and sustainably function as the oxygen-producing electrode. This time the material is nickel borate, made from materials that are even more abundant and inexpensive than the earlier find.

Even more significantly, Nocera says, the new finding shows that the original compound was not a unique, anomalous material, and suggests that there may be a whole family of such compounds that researchers can study in search of one that has the best combination of characteristics to provide a widespread, long-term energy storage technology.

"Sometimes if you do one thing, and only do it once," Nocera says, "you don't know -- is it extraordinary or unusual, or can it be commonplace?" In this case, the new material "keeps all the requirements of being cheap and easy to manufacture" that were found in the cobalt-based electrode, he says, but "with a different metal that's even cheaper than cobalt."

But the research is still in an early stage. "This is a door opener," Nocera says. "Now, we know what works in terms of chemistry. One of the important next things will be to continue to tune the system, to make it go faster and better. This puts us on a fast technological path." While the two compounds discovered so far work well, he says, he is convinced that as they carry out further research even better compounds will come to light. "I don't think we've found the silver bullet yet," he says.

Already, as the research has continued, Nocera and his team have increased the rate of production from these catalysts a hundredfold from the level they initially reported two years ago. In addition, while the earlier paper and the new report focus on electrodes on the oxygen-producing side, originally the other electrode, which produced hydrogen, included the use of a relatively expensive platinum catalyst. But in further work, "we have totally gotten rid of the platinum of the hydrogen side," Nocera says. "That's no longer a concern for us," he says, although that part of the research has not yet been formally reported.

The original discovery has already led to the creation of a company, called Sun Catalytix, that aims to commercialize the system in the next two years. And his research program was recently awarded a major grant from the U.S. Department of Energy's Advanced Research Projects Agency -- Energy.

Funding was provided by the National Science Foundation and the Chesonis Family Foundation.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by David L. Chandler, MIT News Office. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Dinca, Y. Surendranath, D. G. Nocera. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1001859107

Cite This Page:

Massachusetts Institute of Technology. "New water-splitting catalyst: Researchers expand list of potential electrode materials that could be used to store energy." ScienceDaily. ScienceDaily, 13 May 2010. <www.sciencedaily.com/releases/2010/05/100512141953.htm>.
Massachusetts Institute of Technology. (2010, May 13). New water-splitting catalyst: Researchers expand list of potential electrode materials that could be used to store energy. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/05/100512141953.htm
Massachusetts Institute of Technology. "New water-splitting catalyst: Researchers expand list of potential electrode materials that could be used to store energy." ScienceDaily. www.sciencedaily.com/releases/2010/05/100512141953.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins