Featured Research

from universities, journals, and other organizations

New technique improves efficiency of biofuel production

Date:
July 1, 2010
Source:
North Carolina State University
Summary:
Researchers have developed a more efficient technique for producing biofuels from woody plants that significantly reduces the waste that results from conventional biofuel production techniques. The technique is a significant step toward creating a commercially viable new source of biofuels.

“Our eventual goal is to use this technique for any type of feedstock, to produce any biofuel or biochemical that can use these sugars,” says Dr. Ratna Sharma-Shivappa.
Credit: Image courtesy of North Carolina State University

Researchers at North Carolina State University have developed a more efficient technique for producing biofuels from woody plants that significantly reduces the waste that results from conventional biofuel production techniques. The technique is a significant step toward creating a commercially viable new source of biofuels.

Related Articles


"This technique makes the process more efficient and less expensive," says Dr. Ratna Sharma-Shivappa, associate professor of biological and agricultural engineering at NC State and co-author of the research. "The technique could open the door to making lignin-rich plant matter a commercially viable feedstock for biofuels, curtailing biofuel's reliance on staple food crops."

Traditionally, to make ethanol, butanol or other biofuels, producers have used corn, beets or other plant matter that is high in starches or simple sugars. However, since those crops are also significant staple foods, biofuels are competing with people for those crops.

However, other forms of biomass -- such as switchgrass or inedible corn stalks -- can also be used to make biofuels. But these other crops pose their own problem: their energy potential is locked away inside the plant's lignin -- the woody, protective material that provides each plant's structural support. Breaking down that lignin to reach the plant's component carbohydrates is an essential first step toward making biofuels.

At present, researchers exploring how to create biofuels from this so-called "woody" material treat the plant matter with harsh chemicals that break it down into a carbohydrate-rich substance and a liquid waste stream. These carbohydrates are then exposed to enzymes that turn the carbohydrates into sugars that can be fermented to make ethanol or butanol.

This technique often results in a significant portion of the plant's carbohydrates being siphoned off with the liquid waste stream. Researchers must either incorporate additional processes to retrieve those carbohydrates, or lose them altogether.

But now researchers from NC State have developed a new way to free the carbohydrates from the lignin. By exposing the plant matter to gaseous ozone, with very little moisture, they are able to produce a carbohydrate-rich solid with no solid or liquid waste.

"This is more efficient because it degrades the lignin very effectively and there is little or no loss of the plant's carbohydrates," Sharma-Shivappa says. "The solid can then go directly to the enzymes to produce the sugars necessary for biofuel production."

Sharma notes that the process itself is more expensive than using a bath of harsh chemicals to free the carbohydrates, but is ultimately more cost-effective because it makes more efficient use of the plant matter.

The researchers have recently received a grant from the Center for Bioenergy Research and Development to fine-tune the process for use with switchgrass and miscanthus grass. "Our eventual goal is to use this technique for any type of feedstock, to produce any biofuel or biochemical that can use these sugars," Sharma-Shivappa says.

The research, "Effect of ozonolysis on bioconversion of miscanthus to bioethanol," was co-authored by Sharma-Shivappa, NC State Ph.D. student Anushadevi Panneerselvam, Dr. Praveen Kolar, an assistant professor of biological and agricultural engineering at NC State, Dr. Thomas Ranney, a professor of horticultural science at NC State, and Dr. Steve Peretti, an associate professor of chemical and biomolecular engineering at NC State. The research is partially funded by the Biofuels Center of North Carolina and was presented June 23 at the 2010 Annual International Meeting of the American Society for Agricultural and Biological Engineers in Pittsburgh, PA.

NC State's Department of Biological and Agricultural Engineering is a joint department of the university's College of Engineering and College of Agriculture and Life Sciences.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "New technique improves efficiency of biofuel production." ScienceDaily. ScienceDaily, 1 July 2010. <www.sciencedaily.com/releases/2010/06/100630115143.htm>.
North Carolina State University. (2010, July 1). New technique improves efficiency of biofuel production. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2010/06/100630115143.htm
North Carolina State University. "New technique improves efficiency of biofuel production." ScienceDaily. www.sciencedaily.com/releases/2010/06/100630115143.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins