Featured Research

from universities, journals, and other organizations

Searching for causes of neural disconnection in schizophrenia

Date:
July 6, 2010
Source:
Elsevier
Summary:
Dendritic spines act as hubs for communication between nerve cells. Reductions in spines may contribute to a lack of coordination in activity between brain regions. This structural abnormality is particularly relevant in schizophrenia, where pyramidal neurons located in layer 3, the principal cell type receiving communication from other brain regions, have fewer dendritic spines.

Dendritic spines act as hubs for communication between nerve cells. Reductions in spines may contribute to a lack of coordination in activity between brain regions. This structural abnormality is particularly relevant in schizophrenia, where pyramidal neurons located in layer 3, the principal cell type receiving communication from other brain regions, have fewer dendritic spines.

Related Articles


Studying this phenomenon further, researchers at the University of Pittsburgh now provide new insights into the dendritic spine deficits in schizophrenia. Drs. Masayuki Ide and David Lewis studied postmortem brain tissue of individuals diagnosed with schizophrenia and compared it to tissue from healthy individuals.

They found that the expression levels of two gene products, CDC42EP3 and septin 7, were higher and lower, respectively, in tissue from those with schizophrenia. CDC42EP3 and septin 7 play important roles in regulating spine plasticity. Since CDC42EP3 is preferentially expressed in layer 3, the findings suggest that the altered expression of these transcripts may contribute to the layer-specific deficits in dendritic spines associated with schizophrenia.

"We still have a long way to go to fully understand the neurobiology of schizophrenia. An important step in this process will be to begin to learn what we can about neural structure and chemistry from postmortem brain tissue from individuals diagnosed with schizophrenia," commented Dr. John Krystal, Editor of Biological Psychiatry. "These studies may help, ultimately, to develop new treatments that attempt to prevent or reverse these disturbances in brain structure associated with schizophrenia."

Dr. Lewis agreed, remarking that "These findings provide a potential basis for novel treatments for schizophrenia, and for preemptive interventions for individuals who are at high risk for the illness."


Story Source:

The above story is based on materials provided by Elsevier. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ide et al. Altered Cortical CDC42 Signaling Pathways in Schizophrenia: Implications for Dendritic Spine Deficits. Biological Psychiatry, 2010; 68 (1): 25 DOI: 10.1016/j.biopsych.2010.02.016

Cite This Page:

Elsevier. "Searching for causes of neural disconnection in schizophrenia." ScienceDaily. ScienceDaily, 6 July 2010. <www.sciencedaily.com/releases/2010/07/100706082222.htm>.
Elsevier. (2010, July 6). Searching for causes of neural disconnection in schizophrenia. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2010/07/100706082222.htm
Elsevier. "Searching for causes of neural disconnection in schizophrenia." ScienceDaily. www.sciencedaily.com/releases/2010/07/100706082222.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) — More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) — Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) — Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins