Featured Research

from universities, journals, and other organizations

Genetically reprogrammed HSV given systemically shrinks distant sarcomas

Date:
July 8, 2010
Source:
Cincinnati Children's Hospital Medical Center
Summary:
Scientists have used a genetically reprogrammed herpes virus and an anti-vascular drug to shrink spreading distant sarcomas designed to model metastatic disease in mice -- still an elusive goal when treating humans with cancer, according to new research. The study results are even more significant because the oncolytic herpes virus was given to the mice systemically to attack tumors via the blood stream instead of being injected directly into tumors

Timothy Cripe, M.D., Ph.D., an oncologist and researcher at Cincinnati Children's Hospital Medical Center, inspects cell cultures in his laboratory. Cripe and his research colleagues are investigating oncolytic viruses as a new strategy for fighting hard-to-treat childhood cancers.
Credit: Cincinnati Children's Hospital Medical Center

Scientists have used a genetically reprogrammed herpes virus and an anti-vascular drug to shrink spreading distant sarcomas designed to model metastatic disease in mice -- still an elusive goal when treating humans with cancer, according to a study in the July 8 Gene Therapy.

Less than 30 percent of patients with metastatic cancer survive beyond five years, despite the aggressive use of modern combination therapies, including chemotherapy. This creates a significant need for new sarcoma therapies to treat metastatic disease, said Timothy Cripe, M.D., Ph.D., a physician/researcher in the division of Hematology/Oncology at Cincinnati Children's Hospital Medical Center and the study's senior investigator.

The study results are even more significant because the oncolytic herpes virus, HSV-rRp450, was given to the mice systemically to attack tumors via the blood stream instead of being injected directly into tumors.

"Systemic bio-distribution has been a major stumbling block for using virus vectors in gene transfer and virotherapy to treat cancer, but we show that viruses can be used systemically by giving them intravenously to get an anti-tumor effect," Dr. Cripe said.

Also important to results of the current study was using the virus in conjunction with a drug (bevacizumab) that blocks the growth of tumor feeding-blood vessels. In the current study, researchers focused on spreading Ewing sarcoma and Rhabdomyosarcoma -- cancers that form in muscle, bone and connective tissue.

Anti-angiogenic agents like bevacizumab are usually given first in combination cancer therapies because they help enlarge intercellular openings to tumor cells and ease the delivery of drugs, such as chemotherapies. In this study, however, the researchers discovered that bevacizumab has to be given after the virus to maximize the anti-tumor effect of the combined therapy. In fact, giving bevacizumab first lowered the virus's uptake in cancer cells.

The rRp450 oncolytic virus used in the study was derived from herpes simplex type 1. The virus was genetically modified by scientists by removing a gene that makes the virus unable to replicate efficiently in dormant cells. This causes the virus to selectively target and replicate in rapidly growing cancer cells while leaving normally dormant healthy tissue cells alone.

After removing the one gene from the virus, researchers replaced it with a gene that encodes an enzyme that activates a class of anti-tumor chemotherapies called oxazaphosphorines. The overall therapeutic approach is for the virus to infect and degrade the cancer cells and then activate chemotherapy agents as anti-angiogenic agents cut off vascular growth and blood supply to the tumors.

In the current study, however, researchers treated the mice only with rRp450 and the anti-angiogenic drug bevacizumab. This allowed them to test whether the virus could be given systemically, how anti-angiogenic drugs affected virus tumor uptake and the impact this had on tumor growth.

In mice receiving bevacizumab prior to the rRp450, overall tumor shrinkage averaged 40 percent. In mice receiving rRp450 before bevacizumab, tumor size was reduced by an average of 75 percent. The researchers also reported that mice treated with rRp450 before bevacizumab had longer survival rates.

Results of the current study could be used immediately to help design subsequent research into treatment protocols for oncolytic viruses, particularly clinical trials involving combination therapeutic strategies, Dr. Cripe said. Clinical trials are underway in the United States and Europe using oncolytic herpes viruses similar to the one used in the current study.

Other researchers involved in the current study include the first author, Francis Eshun, M.D., and Mark Currier, Rebecca Gillespie, Jillian Fitzpatrick and William Baird, all of the Division of Hematology/Oncology at Cincinnati Children's and its Cancer and Blood Diseases Institute. Funding support for the study from the Cincinnati Children's Division of Hematology/Oncology, teeoffagainstcancer.org, the Katie Linz Foundation, the Limb Preservation Foundation, the American Cancer Society and the National Institutes of Health.


Story Source:

The above story is based on materials provided by Cincinnati Children's Hospital Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Cincinnati Children's Hospital Medical Center. "Genetically reprogrammed HSV given systemically shrinks distant sarcomas." ScienceDaily. ScienceDaily, 8 July 2010. <www.sciencedaily.com/releases/2010/07/100707102447.htm>.
Cincinnati Children's Hospital Medical Center. (2010, July 8). Genetically reprogrammed HSV given systemically shrinks distant sarcomas. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/07/100707102447.htm
Cincinnati Children's Hospital Medical Center. "Genetically reprogrammed HSV given systemically shrinks distant sarcomas." ScienceDaily. www.sciencedaily.com/releases/2010/07/100707102447.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins