Featured Research

from universities, journals, and other organizations

New insights into how tumor cells are fed; Shows promise for development of anti-tumor drugs

Date:
August 8, 2011
Source:
Elsevier Health Sciences
Summary:
Researchers have gained a new understanding of the way in which growing tumors are fed and how this growth can be slowed via angiogenesis inhibitors that eliminate the blood supply to tumors. This represents a step forward towards developing new anti-cancer drug therapies.

Researchers have gained a new understanding of the way in which growing tumors are fed and how this growth can be slowed via angiogenesis inhibitors that eliminate the blood supply to tumors. This represents a step forward towards developing new anti-cancer drug therapies.

The results of this study have been published in the September issue of The American Journal of Pathology.

"The central role of capillary sprouting in tumor vascularization makes it an attractive target for anticancer therapy. Our observations suggest, however, that targeting just this mode of blood vessel formation may not be sufficient to result in a significant antitumor effect," commented lead investigators Sándor Paku, PhD, Semmelweis University, Budapest, and Balazs Dome, MD, PhD, Medical University of Vienna.

Investigators from the Semmelweis University, the National Institute of Oncology, and the National Koranyi Institute of Pulmonology, Budapest, Hungary, and the Medical University of Vienna, Vienna, Austria, used electron and confocal microscopy to examine tumor tissue in mice in which malignant tumor cells had been introduced. They proposed a novel mechanism for the development of tissue pillars (the most characteristic feature of intussusceptive angiogenesis, in which a vessel folds into itself to form two vessels). Moreover, they demonstrated a significant increase in pillar formation after treatment with the angiogenesis inhibitor vatalanib. Their observations support the notion that inhibition of just a single tumor vascularization mechanism can trigger alternative ones.

Prior to this study, the mechanism of pillar formation had not been fully understood. Investigation revealed a progression of events that generates a connection between the processes of endothelial bridging and intussusceptive angiogenesis resulting in rapid pillar formation from pre-existing building blocks. To describe this mechanism of pillar formation the group coined the term "inverse sprouting."

"It is well established now that tumors can obtain sufficient blood supply from alternative vascularization mechanisms (such as intussusceptive angiogenesis) to grow without capillary sprouting (known as the key mode of new vessel formation in cancer). Therefore, antiangiogenic therapies should be tailored depending on the angiogenic phenotype in each single tumor, and the targeting of non-sprouting angiogenic mechanisms in cancer seems to be a rational strategy. Our study provides new understanding of cancer-induced intussusceptive angiogenesis and may serve as a basis for the development of novel drugs targeting this type of blood vessel formation."


Story Source:

The above story is based on materials provided by Elsevier Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sándor Paku, Katalin Dezsö, Edina Bugyik, József Tóvári, József Tímár, Péter Nagy, Viktoria Laszlo, Walter Klepetko, and Balázs Döme. A New Mechanism for Pillar Formation during Tumor-Induced Intussusceptive Angiogenesis. The American Journal of Pathology, 2011; 179 (3) DOI: 10.1016/j.ajpath.2011.05.033

Cite This Page:

Elsevier Health Sciences. "New insights into how tumor cells are fed; Shows promise for development of anti-tumor drugs." ScienceDaily. ScienceDaily, 8 August 2011. <www.sciencedaily.com/releases/2011/08/110808083807.htm>.
Elsevier Health Sciences. (2011, August 8). New insights into how tumor cells are fed; Shows promise for development of anti-tumor drugs. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/08/110808083807.htm
Elsevier Health Sciences. "New insights into how tumor cells are fed; Shows promise for development of anti-tumor drugs." ScienceDaily. www.sciencedaily.com/releases/2011/08/110808083807.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins