Featured Research

from universities, journals, and other organizations

Fat signals: Lipid cleaving enzyme produces signaling molecule essential in lipid metabolism

Date:
August 22, 2011
Source:
Österreichisches Genomforschungsprogramm GEN-AU
Summary:
Normal lipid and energy metabolism requires complex regulation by a network of signaling processes. Researchers now show that mice that lack the fat cleaving enzyme ATGL cannot produce signaling molecules needed to regulate nuclear receptors. As a consequence, mitochondria, the power plants of the cells, fail to function properly in these animals. The findings provide a promising therapeutic strategy for patients suffering from Neutral Lipid Storage Disease (NLSD).

Obesity, diabetes, and cardiovascular diseases are daunting modern-day epidemics. In Western Europe more than 50% of the population is overweight and approximately 15 million people die from cardiovascular diseases such as heart attacks and stroke every year. These conditions are often caused by disorders of fat metabolism, resulting in a massive accumulation of fat in various tissues and of cholesterol in the walls of arteries.

Related Articles


Fats are known to perform long-term storage of energy, but they also act as signaling molecules in the body. Consequently, fat is stored not only in adipose tissue, but also in smaller amounts in almost all cells of the body. Special fat cleaving enzymes, called lipases, are used to remobilize stored fat from cellular depots. One of them, Adipose Triglyceride Lipase (ATGL), is responsible for the first step in the breakdown of fat. Scientists from the University of Graz and colleagues from several countries report in the journal Nature Medicine that ATGL also produces key signaling molecules that are essential for the regulation of energy metabolism.

Normal lipid and energy metabolism requires complex regulation by a network of signaling processes. Nuclear receptor proteins are important players in this regulatory network. Binding of special signaling molecules activates nuclear receptors, which then leads to increased expression of genes responsible for energy production.

Günter Hämmerle, Rudolf Zechner and colleagues now show that mice that lack the fat cleaving enzyme ATGL cannot produce these signaling molecules needed to regulate nuclear receptors. As a consequence, mitochondria, the power plants of the cells, fail to function properly in these animals. Cellular energy production from the oxidation of fat or sugar is strongly reduced. The loss of mitochondrial activity causes massive fat accumulation in the heart and other tissues and leads to lethal heart failure within a few months after birth. Importantly, when the requirement for ATGL was bypassed in these animals by treating them with drugs that activate nuclear receptors directly, mitochondrial function improved, heart functions returned to normal and the animals survived.

These findings provide a promising therapeutic strategy for patients suffering from Neutral Lipid Storage Disease (NLSD). This disorder is caused by dysfunctional ATGL and -- similar to the symptoms shown by ATGL-deficient mice -- patients with NLSD suffer from systemic fat accumulation and severe heart dysfunction that often requires organ transplantation. Treatment with drugs activating nuclear receptors may improve heart function and prevent the lethal cardiac complications. Several of these drugs are already approved for the treatment of other diseases and can be tested for the treatment of patients with NLSD.


Story Source:

The above story is based on materials provided by Österreichisches Genomforschungsprogramm GEN-AU. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guenter Haemmerle, Tarek Moustafa, Gerald Woelkart, Sabrina Büttner, Albrecht Schmidt, Tineke van de Weijer, Matthijs Hesselink, Doris Jaeger, Petra C Kienesberger, Kathrin Zierler, Renate Schreiber, Thomas Eichmann, Dagmar Kolb, Petra Kotzbeck, Martina Schweiger, Manju Kumari, Sandra Eder, Gabriele Schoiswohl, Nuttaporn Wongsiriroj, Nina M Pollak, Franz P W Radner, Karina Preiss-Landl, Thomas Kolbe, Thomas Rülicke, Burkert Pieske, Michael Trauner, Achim Lass, Robert Zimmermann, Gerald Hoefler, Saverio Cinti, Erin E Kershaw, Patrick Schrauwen, Frank Madeo, Bernd Mayer, Rudolf Zechner. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nature Medicine, 2011; DOI: 10.1038/nm.2439

Cite This Page:

Österreichisches Genomforschungsprogramm GEN-AU. "Fat signals: Lipid cleaving enzyme produces signaling molecule essential in lipid metabolism." ScienceDaily. ScienceDaily, 22 August 2011. <www.sciencedaily.com/releases/2011/08/110822091603.htm>.
Österreichisches Genomforschungsprogramm GEN-AU. (2011, August 22). Fat signals: Lipid cleaving enzyme produces signaling molecule essential in lipid metabolism. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2011/08/110822091603.htm
Österreichisches Genomforschungsprogramm GEN-AU. "Fat signals: Lipid cleaving enzyme produces signaling molecule essential in lipid metabolism." ScienceDaily. www.sciencedaily.com/releases/2011/08/110822091603.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) — Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) — Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com
AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

Newsy (Mar. 5, 2015) — AbbVie announced Wednesday it will buy cancer drugmaker Pharmacyclics in a $21 billion deal. Video provided by Newsy
Powered by NewsLook.com
Toddlers Drinking Coffee? Why You Shouldn't Share Your Joe

Toddlers Drinking Coffee? Why You Shouldn't Share Your Joe

Newsy (Mar. 5, 2015) — A survey of Boston mothers and toddlers found that 15 percent of two-year-olds drink coffee and 2.5 percent of 1-year-olds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins