Featured Research

from universities, journals, and other organizations

Telomere failure, telomerase activation drive prostate cancer progression

Date:
February 20, 2012
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
Genomic instability caused by an erosion of the protective caps on chromosomes, followed by activation of an enzyme that reinforces those caps, allows malignant cells to evade destruction and acquire more deadly characteristics, researchers report.

Genomic instability caused by an erosion of the protective caps on chromosomes, followed by activation of an enzyme that reinforces those caps, allows malignant cells to evade destruction and acquire more deadly characteristics, researchers report in an Online Now article at the journal Cell.

Related Articles


In a strain of mice engineered to develop prostate cancer, all mice that went through this two-step process developed lethal cancer and 25 percent had the disease spread to the spine. Two groups of mice that avoided this cycle developed only precancerous lesions or localized prostate cancer.

A comparative analysis of genetic changes in the metastatic mouse tumors and those found in metastatic human prostate cancer identified the Smad4 gene as a driver in bone metastasis. Fourteen other genes were found to be associated with human prostate cancer prognosis.

The research focused on telomeres -- repeat nucleotide sequences at the tips of chromosomes that prevent genomic damage during cell division. Telomeres shorten with each cell division, eventually permitting genomic instability in the cells that normally causes these abnormal cells to die.

In cancer the enzyme telomerase becomes activated and lengthens telomeres, preserving damaged cells to survive and reproduce. Telomerase is inactive in normal cells.

Telomerase activation confers new strengths on tumors

"These in vivo mouse studies, together with human and mouse prostate cancer genomic data, provide evidence that telomere dysfunction plays a critical role in prostate cancer initiation and progression," said co-senior author Lynda Chin, M.D., professor and chair of The University of Texas MD Anderson Cancer Center's Department of Genomic Medicine.

"Our studies also show that telomerase activation after genomic instability caused by telomere dysfunction enables evolving cancers to progress and acquire new biological properties, including central features of advanced human prostate cancer," Chin said.

Chin, co-senior author and MD Anderson President Ronald DePinho, M.D., and colleagues conducted this research while at Dana-Farber Cancer Institute in Boston.

Telomere dysfunction, fired-up telomerase, cause bone metastasis

The team took a strain of mice with both the p53 and pten tumor-suppressing genes knocked out that normally develop nonmetastatic prostate cancer and engineered some to express telomerase. They were cross-bred for several generations.

  • Control mice with intact telomeres (either wild-type mice or those with telomerase expressed) avoided the genomic instability caused by telomere shortening. All of these mice developed locally invasive, nonmetastatic prostate cancer.
  • Mice without telomerase were subject to telomere dysfunction and genetic changes and developed precancerous high-grade prostate intraepithelial neoplasia (HPIN) but 60 percent of them did not progress to prostate cancer. Signs of programmed cell death triggered by genetic abnormalities abounded in this group.
  • Mice subject to telomere dysfunction, genomic instability and telomerase activation also developed HPIN but then progressed to lethal bulky tumors, with 5 of 20 developing spinal metastases that were not seen in the genome-stable mice.

"Not only did telomerase reactivation bypass the cancer progression block that arises with telomere dysfunction, it also conferred a new property -- bone metastasis -- that was not seen in tumors that did not go through telomere dysfunction followed by telomerase reactivation," said first author Zhihu Ding, Ph.D., formerly of Dana-Farber and now with Sanofi-Aventis, Inc.

"This provides the first genetic evidence that telomerase reactivation and genome stabilization are necessary to drive full malignant progression in epithelial cancers," Ding said.

Aligning genetic alterations in mice and humans

Chin, Ding and colleagues analyzed gene copy number aberrations -- genes deleted or amplified -- in 18 advanced tumors from the mice and 194 human prostate tumors.

They found 22 of the 94 copy number alterations involving deletion or amplification of 741 genes identified in mice were similar to those found in humans. A series of analyses of changes found in bone metastases pointed to deletions of the Smad4 tumor-suppressor gene, which regulates the transforming growth factor beta (TGF-ß) pathway.

The team took this finding back to the mouse model with tumor suppressors p53 and pten knocked out. These mice don't develop bone metastasis, but when the researchers also knocked out Smad4, more aggressive tumors developed, including bone metastasis in three of 24 mice.

Genes prognostic for human prostate cancer

Next, they looked at 14 genes in nine molecular pathways found to be enriched in bone metastasis to see if they were prognostic for recurrence (as measured by PSA levels after surgery) among 140 prostate cancer patients.

The 14-gene set was significantly prognostic of biochemical recurrence, providing evidence of their biological relevance to human prostate cancer, but the researchers noted that their individual contributions and mechanisms of action will require further research.

"Overall, our findings validate the integrative approach of employing genotype-phenotype correlations found in the mouse model with the power of genomic and bioinformatic analyses to discover and explain molecular mechanisms that drive prostate cancer," said co-first author Chang-Jiun Wu, Ph.D., a postdoctoral fellow in MD Anderson's Department of Genomic Medicine.

This research was funded by grants from the National Cancer Institute, the Prostate Cancer Foundation, the U.S. Department of Defense, the Damon Runyon Cancer Research Foundation, the Multiple Myeloma Research Foundation, an American Cancer Society and the Robert A. and Renee E. Belfer Foundation.


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhihu Ding, Chang-Jiun Wu, Mariela Jaskelioff, Elena Ivanova, Maria Kost-Alimova, Alexei Protopopov, Gerald C. Chu, Guocan Wang, Xin Lu, Emma S. Labrot, Jian Hu, Wei Wang, Yonghong Xiao, Hailei Zhang, Jianhua Zhang, Jingfang Zhang, Boyi Gan, Samuel R. Perry, Shan Jiang, Liren Li, James W. Horner, Y. Alan Wang, Lynda Chin, Ronald A. DePinho. Telomerase Reactivation following Telomere Dysfunction Yields Murine Prostate Tumors with Bone Metastases. Cell, 2012; DOI: 10.1016/j.cell.2012.01.039

Cite This Page:

University of Texas M. D. Anderson Cancer Center. "Telomere failure, telomerase activation drive prostate cancer progression." ScienceDaily. ScienceDaily, 20 February 2012. <www.sciencedaily.com/releases/2012/02/120220161233.htm>.
University of Texas M. D. Anderson Cancer Center. (2012, February 20). Telomere failure, telomerase activation drive prostate cancer progression. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2012/02/120220161233.htm
University of Texas M. D. Anderson Cancer Center. "Telomere failure, telomerase activation drive prostate cancer progression." ScienceDaily. www.sciencedaily.com/releases/2012/02/120220161233.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) — Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins