Featured Research

from universities, journals, and other organizations

Gases drawn into smog particles stay there

Date:
February 21, 2012
Source:
University of California - Irvine
Summary:
Airborne gases get sucked into stubborn smog particles from which they cannot escape, according to new findings. These finding could explain why air pollution models underestimate organic aerosols.

Airborne gases get sucked into stubborn smog particles from which they cannot escape, according to findings by UC Irvine and other researchers recently published in the Proceedings of the National Academy of Sciences.

The results could explain a problem identified in recent years: Computer models long used by the U.S. Environmental Protection Agency, California air regulators and others significantly underestimate organic aerosols -- the major component of smog particles. Such pollution blocks views of mountains and has been linked to everything from asthma to heart attacks. It is also the largest unknown in climate change calculations.

"You can't have a lot of confidence in the predicted levels right now," said lead author Veronique Perraud, assistant project scientist to pioneering UCI air chemist Barbara Finlayson-Pitts. "It's extremely important, because if the models do a bad job of predicting particles, we may be underestimating the effects on the public."

An independent expert who reviewed the research for PNAS agreed.

"The conclusions are highly significant," said Purdue University atmospheric chemist Paul Shepson. "This paper should -- and, I expect, will -- have a big impact. We've known for nearly a decade that there's a huge difference between what's in the models and what's actually in the air. Thanks to this paper, we have a much better idea of why."

Scientists at UCI, a U.S. Department of Energy laboratory and Portland State University combined pinene, a common ingredient in household cleaners such as Pine Sol and outdoor emissions, with oxides of nitrogen and ozone to mimic smog buildup.

Models used by regulators for decades have assumed that organic aerosols in such pollution form liquid droplets that quickly dissolve potentially unhealthy gases. But the new work found that once gases are sucked into a particle, they get buried deeper and deeper.

"They check in, and they don't check out. They cannot escape. The material does not readily evaporate and may live longer and grow faster in total mass than previously thought," Finlayson-Pitts said. "This is consistent with related studies showing that smog particles may be an extremely viscous tar."

Perraud noted that broader study needs to be done: "The next logical step is to straighten the models out. We need enough follow-up data to do so."

Sophisticated tools made it easier to pinpoint the exact characteristics of chemical compounds in air. The scientists used a 26-foot-long "aerosol flow tube" at the AirUCI unit and a one-of-a-kind, 900-pound instrument known as SPLAT (a single particle laser ablation time-of-flight mass spectrometer) at the Pacific Northwest National Laboratory.

Co-authors are Emily Bruns, Wayne Chang, Donald Dabdub, Michael Ezell, Stanley Johnson and Yong Yu of UCI; M. Lizabeth Alexander and Alla Zelenyuk of PNNL; Dan Imre of Imre Consulting; and James F. Pankow of Portland State University. Funding was provided by the U.S. Department of Energy and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of California - Irvine. Note: Materials may be edited for content and length.


Journal Reference:

  1. V. Perraud, E. A. Bruns, M. J. Ezell, S. N. Johnson, Y. Yu, M. L. Alexander, A. Zelenyuk, D. Imre, W. L. Chang, D. Dabdub, J. F. Pankow, B. J. Finlayson-Pitts. Nonequilibrium atmospheric secondary organic aerosol formation and growth. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1119909109

Cite This Page:

University of California - Irvine. "Gases drawn into smog particles stay there." ScienceDaily. ScienceDaily, 21 February 2012. <www.sciencedaily.com/releases/2012/02/120221124812.htm>.
University of California - Irvine. (2012, February 21). Gases drawn into smog particles stay there. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2012/02/120221124812.htm
University of California - Irvine. "Gases drawn into smog particles stay there." ScienceDaily. www.sciencedaily.com/releases/2012/02/120221124812.htm (accessed April 24, 2014).

Share This



More Earth & Climate News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
New Pictures of Ship That Sank in 1888

New Pictures of Ship That Sank in 1888

AP (Apr. 24, 2014) Federal researchers have released new images of the City of Chester, a steamship that sank in San Francisco Bay in 1888. Researchers recently found the shipwreck while mapping shipping routes. (April 24) Video provided by AP
Powered by NewsLook.com
Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Reuters - US Online Video (Apr. 23, 2014) A group of space explorers say the chance of a city-obliterating asteroid striking Earth is higher than scientists previously believed. Deborah Gembara reports. Video provided by Reuters
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins