Featured Research

from universities, journals, and other organizations

New 'magnetic yeast' marks step toward harnessing Nature's magnetic capabilities

Date:
February 28, 2012
Source:
Wyss Institute for Biologically Inspired Engineering at Harvard
Summary:
Researchers have developed a method for inducing magnetic sensitivity in an organism that is not naturally magnetic -- yeast. Their technology could potentially be used to magnetize a variety of different cell types in medical, industrial and research applications.

Pamela Silver and Keiji Nishida were able to create enough magnetic sensitivity in yeast cells to cause them to migrate toward an external magnet. The arrows in this image point out two of the larger concentrations of iron in a single yeast cell.
Credit: Image courtesy of Wyss Institute for Biologically Inspired Engineering at Harvard

Researchers at the Wyss Institute and Harvard Medical School have developed a method for inducing magnetic sensitivity in an organism that is not naturally magnetic -- yeast. Their technology could potentially be used to magnetize a variety of different cell types in medical, industrial and research applications.

Related Articles


The research findings appear in PLoS Biology.

Magnetic fields are everywhere, but few organisms can sense them. Those that do, such as birds and butterflies, use magnetic sensitivity as a kind of natural global positioning system to guide them along migratory routes. How these few magnetically aware organisms gain their magnetism remains one of biology's unsolved mysteries.

Researchers Pamela Silver, Ph.D., and Keiji Nishida, Ph.D., were able to imbue yeast with similar properties. Silver, the principal investigator, is a founding core faculty member at the Wyss Institute and a professor of Biochemistry and Systems Biology at Harvard Medical School (HMS). Nishida is a research fellow in Systems Biology at HMS. "Magnetism in nature is a unique and mysterious biological function that very few living systems exploit," said Silver. "So while magnetic yeast may not sound like a serious scientific breakthrough, it's actually a highly significant first step toward harnessing this natural phenomenon and applying it to all sorts of important practical purposes."

The presence of iron can cause magnetism, but most cells, if exposed to this common metal, hide it away in sealed-off cavities where it cannot have an effect. Silver and Nishida were able to block expression of the protein that causes the iron sequestration, allowing the iron to circulate freely throughout the yeast cell. In this way, they created enough magnetic sensitivity in the cell to cause it to migrate toward an external magnet.

The researchers also found a gene that correlates with magnetism by instructing the production of a critical protein that can dial up magnetism. They then enhanced the magnetic sensitivity even further through interaction with a second protein that regulates cell metabolism. Since the same metabolic protein functions similarly in cells ranging from simple yeast to more advanced -- even human -- cells, the new method could potentially be applied to a much wider range of organisms.

Silver notes that in an industrial setting, magnetization could be extremely helpful as a means of targeting and isolating specific cells. Contaminated cells could be pulled out and disposed of during the processing of biological materials, and cells that are critical to a certain manufacturing process could be isolated and put to use. Magnetic cells could also be used to interact with non-living machinery. For example, magnetism could be used in tissue engineering to guide cells to layer themselves on a scaffold in a specific way. New therapies might one day be created in which cells are engineered to respond to a magnetic field by growing or healing, and implanted magnetic stem cells might one day be tracked with magnetic resonance imaging.

"This work shows how design principles from one type of cell can be harnessed using synthetic biology to transfer novel functionalities to another, which is a core approach driving the field of biologically inspired engineering," said Wyss Institute Founding Director Donald Ingber, M.D. Ph.D. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Children's Hospital Boston, and Professor of Bioengineering at Harvard's School of Engineering and Applied Sciences. "The ability to control cells magnetically will also synergize with many other technologies in the pipeline at the Wyss Institute that rely on use of magnetic fields to control cell functions remotely, or to isolate rare cells from biological fluids."


Story Source:

The above story is based on materials provided by Wyss Institute for Biologically Inspired Engineering at Harvard. Note: Materials may be edited for content and length.


Journal Reference:

  1. Keiji Nishida, Pamela A. Silver. Induction of Biogenic Magnetization and Redox Control by a Component of the Target of Rapamycin Complex 1 Signaling Pathway. PLoS Biology, 2012; 10 (2): e1001269 DOI: 10.1371/journal.pbio.1001269

Cite This Page:

Wyss Institute for Biologically Inspired Engineering at Harvard. "New 'magnetic yeast' marks step toward harnessing Nature's magnetic capabilities." ScienceDaily. ScienceDaily, 28 February 2012. <www.sciencedaily.com/releases/2012/02/120228190922.htm>.
Wyss Institute for Biologically Inspired Engineering at Harvard. (2012, February 28). New 'magnetic yeast' marks step toward harnessing Nature's magnetic capabilities. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2012/02/120228190922.htm
Wyss Institute for Biologically Inspired Engineering at Harvard. "New 'magnetic yeast' marks step toward harnessing Nature's magnetic capabilities." ScienceDaily. www.sciencedaily.com/releases/2012/02/120228190922.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Reuters - US Online Video (Apr. 17, 2015) A truck carrying honey bees overturns near Lynnwood, Washington, spreading boxes of live bees across the highway. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Dog Flu Spreading in Midwestern States

Dog Flu Spreading in Midwestern States

AP (Apr. 17, 2015) Dog flu is spreading in several Midwestern states. Dog daycare centers and veterinary offices are taking precautions. (April 17) Video provided by AP
Powered by NewsLook.com
Raw: Rare Whale Spotted in Gulf of Mexico

Raw: Rare Whale Spotted in Gulf of Mexico

AP (Apr. 17, 2015) Researchers from the E/V Nautilus had quite a surprise Tuesday, when a curious sperm whale swam around their remotely operated vehicle in the Gulf of Mexico. Cameras captured the encounter. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins