Featured Research

from universities, journals, and other organizations

Potential Alzheimer's disease drug slows damage and symptoms in animal model

Date:
March 13, 2012
Source:
University of Pennsylvania School of Medicine
Summary:
A compound that previously progressed to Phase II clinical trials for cancer treatment slows neurological damage and improves brain function in an animal model of Alzheimer's disease, according to a new study. The compound epothilone D is effective in preventing further neurological damage and improving cognitive performance in a mouse model of Alzheimer's disease (AD). The results establish how the drug might be used in early-stage AD patients.

This is an electron micrographic picture of a cross section of a nerve from an Alzheimer’s model mouse. Structural abnormalities in the nerve are indicated by the arrows. Alzheimer model mice that received the drug epothilone D had a significant reduction in the number of these abnormalities.
Credit: Zhang, et al. The Journal of Neuroscience 2012.

A compound that previously progressed to Phase II clinical trials for cancer treatment slows neurological damage and improves brain function in an animal model of Alzheimer's disease, according to a new study. The study published the week of March 13 in the Journal of Neuroscience shows that the compound epothilone D (EpoD) is effective in preventing further neurological damage and improving cognitive performance in a mouse model of Alzheimer's disease (AD). The results establish how the drug might be used in early-stage AD patients.

Investigators from the Perelman School of Medicine at the University of Pennsylvania, led by first author Bin Zhang, MD, PhD, senior research investigator, and senior author Kurt R. Brunden, PhD, Director of Drug Discovery at the Center for Neurodegenerative Disease Research (CNDR), administered EpoD to aged mice that had memory deficits and inclusions within their brains that resemble the tangles formed by misfolded tau protein, a hallmark of AD. In nerve cells, tau normally stabilizes structures called microtubules, the molecular railroad tracks upon which cellular cargo is transported. Tangles may compromise microtubule stability, with resulting damage to nerve cells. A drug that could increase microtubule stability might improve nerve-cell function in AD and other diseases where tangles form in the brain.

EpoD acts by the same microtubule-stabilizing mechanism as the FDA-approved cancer drug paclitaxel (Taxol™). These drugs prevent cancer cell proliferation by over-stabilizing specialized microtubules involved in the separation of chromosomes during the process of cell division. However, the Penn researchers previously demonstrated that EpoD, unlike paclitaxel, readily enters the brain and so may be useful for treating AD and related disorders.

After three months of receiving EpoD, additional tau clumps did not form in the brains of the aged AD mice, and nerve-cell function was increased compared to the AD mice that did not receive drug. What's more, the EpoD-treated mice showed improvements in learning and memory. Importantly, the doses of EpoD that resulted in these benefits were much lower than had previously been used in Phase II clinical testing of EpoD in cancer patients. The investigators observed no side-effects -- including the suppression of the immune system and peripheral nerve damage -- in the transgenic mice that received EpoD.

These results suggest that low doses of EpoD might have therapeutic benefit in AD and related neurodegenerative diseases, such as frontotemporal lobar degeneration or progressive supranuclear palsy, where tangles are the primary brain pathology.

Co-authors Virginia M.-Y. Lee, PhD, CNDR director, and John Trojanowski, MD, PhD, director of the Institute on Aging at Penn and CNDR co-director, introduced the concept of using microtubule-stabilizing drugs over 15 years ago to counteract tangles of tau and compensate for the loss of normal tau function.

The Penn CNDR researchers, in collaboration with co-authors Amos B. Smith, III, PhD, the Rhodes Thompson Professor of Chemistry, and Carlo Ballatore, PhD, from the Penn Department of Chemistry, previously identified EpoD as a lead microtubule-stabilizing agent for evaluation in AD mouse models after characterizing several members of the epothilone family of compounds. Unlike many microtubule-stabilizing compounds, EpoD readily enters the brain, where it appears to persist for a much longer time than in the blood. This feature may explain why low doses were both effective and safe in the mouse model of AD.

The work significantly extends an earlier study published in the Journal of Neuroscience in October 2010.

The research was funded by the National Institute on Aging and the Marian S. Ware Alzheimer Program.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Zhang, J. Carroll, J. Q. Trojanowski, Y. Yao, M. Iba, J. S. Potuzak, A.-M. L. Hogan, S. X. Xie, C. Ballatore, A. B. Smith, V. M.- Y. Lee, K. R. Brunden. The Microtubule-Stabilizing Agent, Epothilone D, Reduces Axonal Dysfunction, Neurotoxicity, Cognitive Deficits, and Alzheimer-Like Pathology in an Interventional Study with Aged Tau Transgenic Mice. Journal of Neuroscience, 2012; 32 (11): 3601 DOI: 10.1523/JNEUROSCI.4922-11.2012

Cite This Page:

University of Pennsylvania School of Medicine. "Potential Alzheimer's disease drug slows damage and symptoms in animal model." ScienceDaily. ScienceDaily, 13 March 2012. <www.sciencedaily.com/releases/2012/03/120313185859.htm>.
University of Pennsylvania School of Medicine. (2012, March 13). Potential Alzheimer's disease drug slows damage and symptoms in animal model. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/03/120313185859.htm
University of Pennsylvania School of Medicine. "Potential Alzheimer's disease drug slows damage and symptoms in animal model." ScienceDaily. www.sciencedaily.com/releases/2012/03/120313185859.htm (accessed October 21, 2014).

Share This



More Mind & Brain News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Court Ruling Means Kids' Online Activity Could Be On Parents

Court Ruling Means Kids' Online Activity Could Be On Parents

Newsy (Oct. 17, 2014) In a ruling attorneys for both sides agreed was a first of its kind, a Georgia appeals court said parents can be held liable for what kids put online. Video provided by Newsy
Powered by NewsLook.com
The Best Foods To Boost Your Mood

The Best Foods To Boost Your Mood

Buzz60 (Oct. 17, 2014) Feeling down? Reach for the refrigerator, not the medicine cabinet! TC Newman (@PurpleTCNewman) shares some of the best foods to boost your mood. Video provided by Buzz60
Powered by NewsLook.com
You Can Get Addicted To Google Glass, Apparently

You Can Get Addicted To Google Glass, Apparently

Newsy (Oct. 15, 2014) Researchers claim they’ve diagnosed the first example of the disorder in a 31-year-old U.S. Navy serviceman. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins