Featured Research

from universities, journals, and other organizations

New method for cleaning up nuclear waste

Date:
March 20, 2012
Source:
University of Notre Dame
Summary:
A new crystalline compound can be tailored to safely absorb radioactive ions from nuclear waste streams, experts say.

(NDTB-1) as a crystalline compound that can be tailored to safely absorb radioactive ions from nuclear waste streams.
Credit: Image courtesy of University of Notre Dame

While the costs associated with storing nuclear waste and the possibility of it leaching into the environment remain legitimate concerns, they may no longer be obstacles on the road to cleaner energy.

Related Articles


A new paper by researchers at the University of Notre Dame, led by Thomas E. Albrecht-Schmitt, professor of civil engineering and geological sciences and concurrent professor of chemistry and biochemistry, showcases Notre Dame Thorium Borate-1 (NDTB-1) as a crystalline compound that can be tailored to safely absorb radioactive ions from nuclear waste streams. Once captured, the radioactive ions can then be exchanged for higher-charged species of a similar size, recycling the material for re-use.

If one considers that the radionuclide technetium (99Tc) is present in the nuclear waste at most storage sites around the world, the math becomes simple. There are more than 436 nuclear power plants operating in 30 countries; that is a lot of nuclear waste. In fact, approximately 305 metric tons of 99Tc were generated from nuclear reactors and weapons testing from 1943 through 2010. Its safe storage has been an issue for decades.

"The framework of the NDTB-1 is key," says Albrecht-Schmitt. "Each crystal contains a framework of channels and cages featuring billions of tiny pores, which allow for the interchange of anions with a variety of environmental contaminants, especially those used in the nuclear industry, such as chromate and pertechnetate."

Albrecht-Schmitt's team has concluded successful laboratory studies using the NDTB-1 crystals, during which they removed approximately 96 percent of 99Tc. Additional field tests conducted at the Savannah River National Laboratory in Aiken, S.C., and discussed in the paper have shown that the Notre Dame compound successfully removes 99Tc from nuclear waste and also exhibits positive exchange selectivity for greater efficiency.


Story Source:

The above story is based on materials provided by University of Notre Dame. The original article was written by William G. Gilroy. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shuao Wang, Ping Yu, Bryant A. Purse, Matthew J. Orta, Juan Diwu, William H. Casey, Brian L. Phillips, Evgeny V. Alekseev, Wulf Depmeier, David T. Hobbs, Thomas E. Albrecht-Schmitt. Selectivity, Kinetics, and Efficiency of Reversible Anion Exchange with TcO4− in a Supertetrahedral Cationic Framework. Advanced Functional Materials, 2012; DOI: 10.1002/adfm.201103081

Cite This Page:

University of Notre Dame. "New method for cleaning up nuclear waste." ScienceDaily. ScienceDaily, 20 March 2012. <www.sciencedaily.com/releases/2012/03/120320151958.htm>.
University of Notre Dame. (2012, March 20). New method for cleaning up nuclear waste. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2012/03/120320151958.htm
University of Notre Dame. "New method for cleaning up nuclear waste." ScienceDaily. www.sciencedaily.com/releases/2012/03/120320151958.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins