Featured Research

from universities, journals, and other organizations

Compounds dramatically alter biological clock and lead to weight loss, animal study suggests

Date:
March 29, 2012
Source:
Scripps Research Institute
Summary:
Scientists have synthesized a pair of small molecules that dramatically alter the core biological clock in animal models, highlighting the compounds' potential effectiveness in treating a remarkable range of disorders -- including obesity, diabetes, high cholesterol, and serious sleep disorders.

Scientists from the Florida campus of The Scripps Research Institute have synthesized a pair of small molecules that dramatically alter the core biological clock in animal models, highlighting the compounds' potential effectiveness in treating a remarkable range of disorders -- including obesity, diabetes, high cholesterol, and serious sleep disorders. Could it also work for humans?
Credit: © olly / Fotolia

Scientists from the Florida campus of The Scripps Research Institute have synthesized a pair of small molecules that dramatically alter the core biological clock in animal models, highlighting the compounds' potential effectiveness in treating a remarkable range of disorders -- including obesity, diabetes, high cholesterol, and serious sleep disorders.

Related Articles


The study was published on March 29, 2012, in an advance, online edition of the journal Nature.

The study showed that when administered in animal models the synthetic small molecules altered circadian rhythm and the pattern of core clock gene expression in the brain's hypothalamus, the site of the master cellular clock that synchronizes daily rhythms in mammals; circadian rhythms are the physiological processes that respond to a 24-hour cycle of light and dark and are present in most living things.

When given to diet-induced obese mice, these same small molecules decreased obesity by reducing fat mass and markedly improving cholesterol levels and hyperglycemia -- chronically high blood sugar levels that frequently lead to diabetes.

"The idea behind this research is that our circadian rhythms are coupled with metabolic processes and that you can modulate them pharmacologically," said Thomas Burris, a professor at Scripps Florida who led the study. "As it turns out, the effect of that modulation is surprisingly positive -- everything has been beneficial so far."

Burris stressed that these compounds were first generation -- the first to hit their targets in vivo with room for improvement as potential treatments. "In terms of therapeutics, this is really the first step," he said.

In the new study, the team identified and tested a pair of potent synthetic compounds that activate proteins called REV-ERBα and REV-ERBβ, which play an integral role in regulating the expression of core clock proteins that drive biological rhythms in activity and metabolism.

In the study, the scientists observed clear metabolic effects when the synthetic compounds were administered twice a day for 12 days. Animals displayed weight loss due to decreased fat mass with no changes in the amount of food they ate. The animals followed the human model of obesity closely, eating a standard Western diet of high fat, high sugar foods, yet still lost weight when given the compounds.

In one of the study's more striking findings, both synthetic compounds were shown to reduce cholesterol production. Cholesterol in the blood of treated animal models decreased 47 percent; triglycerides in the blood decreased 12 percent.

The circadian pattern of expression of a number of metabolic genes in the liver, skeletal muscle, and in fat tissue was also altered, resulting in increased energy expenditure, something of a surprise. In the study, the scientists observed a five percent increase in oxygen consumption, suggesting increased energy expenditure during the day and at night. However, these increases were not due to increased activity -- the animals displayed an overall 15 percent decrease in movement during those same time periods.

In addition to its impact on metabolism, the two compounds also affected the animals' activity during periods of light and darkness, suggesting that this class of compound may be useful for the treatment of sleep disorders, including the common problem of jet lag.

The first authors of the study, "Regulation of Circadian Behavior and Metabolism by Synthetic REV‐ERB Agonists," are Laura A. Solt and Yongjun Wang of Scripps Research. Other authors include Subhashis Banerjee, Travis Hughes, Douglas J. Kojetin, Thomas Lundasen, Youseung Shin, Jin Liu, Michael D. Cameron, Romain Noel, Andrew A. Butler, and Theodore M. Kamenecka of Scripps Research; and Seung‐Hee Yoo and Joseph S. Takahashi of the Howard Hughes Medical Institute and University of Texas Southwestern Medical Center.

The study was supported by the National Institutes of Health and the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Laura A. Solt, Yongjun Wang, Subhashis Banerjee, Travis Hughes, Douglas J. Kojetin, Thomas Lundasen, Youseung Shin, Jin Liu, Michael D. Cameron, Romain Noel, Seung-Hee Yoo, Joseph S. Takahashi, Andrew A. Butler, Theodore M. Kamenecka, Thomas P. Burris. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature, 2012; DOI: 10.1038/nature11030

Cite This Page:

Scripps Research Institute. "Compounds dramatically alter biological clock and lead to weight loss, animal study suggests." ScienceDaily. ScienceDaily, 29 March 2012. <www.sciencedaily.com/releases/2012/03/120329142018.htm>.
Scripps Research Institute. (2012, March 29). Compounds dramatically alter biological clock and lead to weight loss, animal study suggests. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/03/120329142018.htm
Scripps Research Institute. "Compounds dramatically alter biological clock and lead to weight loss, animal study suggests." ScienceDaily. www.sciencedaily.com/releases/2012/03/120329142018.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins