Featured Research

from universities, journals, and other organizations

Organics probably formed easily in early solar system

Date:
March 30, 2012
Source:
University of Chicago
Summary:
Complex organic compounds, including many important to life on Earth, were readily produced under conditions that likely prevailed in the primordial solar system. Scientists came to this conclusion after linking computer simulations to laboratory experiments.

NASA’s Spitzer Space Telescope observed a fledgling solar system like the one depicted in this artist’s concept. New computer simulations at the University of Chicago show that turbulence lofts dust particles above the illuminated portion of the cloud, where they become exposed to high levels of ultraviolet light from nearby stars. UV irradiation was a key component in the production of complex organic molecules in the early solar system.
Credit: Courtesy of NASA/JPL-Caltech

Complex organic compounds, including many important to life on Earth, were readily produced under conditions that likely prevailed in the primordial solar system. Scientists at the University of Chicago and NASA Ames Research Center came to this conclusion after linking computer simulations to laboratory experiments.

Related Articles


Fred Ciesla, assistant professor in geophysical sciences at UChicago, simulated the dynamics of the solar nebula, the cloud of gas and dust from which the sun and the planets formed. Although every dust particle within the nebula behaved differently, they all experienced the conditions needed for organics to form over a simulated million-year period.

"Whenever you make a new planetary system, these kinds of things should go on," said Scott Sandford, a space science researcher at NASA Ames. "This potential to make organics and then dump them on the surfaces of any planet you make is probably a universal process."

Although organic compounds are commonly found in meteorites and cometary samples, their origins presented a mystery. Now Ciesla and Sandford describe how the compounds possibly evolved in the March 29 edition of Science Express. How important a role these compounds may have played in giving rise to the origin of life remains poorly understood, however.

Sandford has devoted many years of laboratory research to the chemical processes that occur when high-energy ultraviolet radiation bombards simple ices like those seen in space. "We've found that a surprisingly rich mixture of organics is made," Sandford said.

These include molecules of biological interest, such as amino acids, nucleobases and amphiphiles, which make up the building blocks of proteins, RNA and DNA, and cellular membranes, respectively. Irradiated ices should have produced these same sorts of molecules during the formation of the solar system, he said.

But a question remained: Could icy grains traveling through the outer edges of the solar nebula, in temperatures as low as minus-405 degrees Fahrenheit (less than 30 Kelvin), become exposed to UV radiation from surrounding stars?

Ciesla's computer simulations reproduced the turbulent environment expected in the protoplanetary disk. This washing machine action mixed the particles throughout the nebula, and sometimes lofted them to high altitudes within the cloud, where they could become irradiated.

"Taking what we think we know about the dynamics of the outer solar nebula, it's really hard for these ice particles not to spend at least part of their time where they're going to be exposed to UV radiation," Ciesla said.

The grains also moved in and out of warmer regions in the nebula. This completes the recipe for making organic compounds: ice, irradiation and warming.

"It was surprising how all these things just naturally fell out of the model," Ciesla said. "It really did seem like this was a natural consequence of particle dynamics in the initial stage of planet formation."

Funding: NASA's Origins of the Solar Systems Program and the Astrobiology Institute.


Story Source:

The above story is based on materials provided by University of Chicago. The original article was written by Ruth Dasso Marlaire and Steve Koppes. Note: Materials may be edited for content and length.


Journal Reference:

  1. F. J. Ciesla, S. A. Sandford. Organic Synthesis via Irradiation and Warming of Ice Grains in the Solar Nebula. Science, 2012; DOI: 10.1126/science.1217291

Cite This Page:

University of Chicago. "Organics probably formed easily in early solar system." ScienceDaily. ScienceDaily, 30 March 2012. <www.sciencedaily.com/releases/2012/03/120330205815.htm>.
University of Chicago. (2012, March 30). Organics probably formed easily in early solar system. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/03/120330205815.htm
University of Chicago. "Organics probably formed easily in early solar system." ScienceDaily. www.sciencedaily.com/releases/2012/03/120330205815.htm (accessed October 25, 2014).

Share This



More Space & Time News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins