Featured Research

from universities, journals, and other organizations

How embryonic stem cells orchestrate human development

Date:
April 5, 2012
Source:
Yale University
Summary:
Researchers show in detail how three genes within human embryonic stem cells regulate development, a finding that increases understanding of how to grow these cells for therapeutic purposes.

Yale researchers show in detail how three genes within human embryonic stem cells regulate development, a finding that increases understanding of how to grow these cells for therapeutic purposes.

This process, described in the April 6 issue of the journal Cell Stem Cell, is different in humans than in mice, highlighting the importance of research using human embryonic stem cells.

"It is difficult to deduce from the mouse how these cells work in humans," said Natalia Ivanova, assistant professor of genetics in the Yale Stem Cell Center and senior author of the study. "Human networks organize themselves quite differently."

Embryonic stem cells form soon after conception and are special because each cell can become any type of cell in the body. Cells become increasingly specialized as development progresses, losing the ability to become other cell types -- except for the renewal of a few new stem cells. Scientists want to understand the processes of self-renewal and differentiation in order to treat a host of diseases characterized by damaged cells such as Parkinson's disease, spinal cord injury, heart disease, and Alzheimer's.

Scientists have identified three genes active in early development -- Nanog, Oct 4, and Sox 2 -- as essential to maintaining the stem cell's ability to self-renew and prevent premature differentiation into the "wrong" type of cells. Because of restrictions on the use of human embryonic stem cells, much of the investigation into how these genes work has been done in mice.

The new study shows that human embryonic cells operate in fundamentally different ways in humans than in mouse cells. In humans, for instance, Nanog pairs with Oct 4 to regulate differentiation of so-called neuro-ectoderm cells, a lineage that gives rise to neurons and other central nervous system cells. Sox 2, by contrast, inhibits the differentiation of mesoderm -- a lineage that gives rise to muscles and many other tissue types. Oct 4 cooperates with the other genes and is crucial in the regulation of all four early cell lineages: ectoderm, mesoderm, and endoderm -- which gives rise to gut and glands such as liver and pancreas -- as well as the creation of new stem cells. The self-renewal of stem cells has been implicated in several forms of cancer.

Ivanova stresses that many other genes must be involved in regulation of these early developmental changes, and her lab is investigating that question now.

The research was supported by a grant from the Connecticut Stem Cell Research Program.


Story Source:

The above story is based on materials provided by Yale University. The original article was written by Bill Hathaway. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zheng Wang, Efrat Oron, Brynna Nelson, Spiro Razis, Natalia Ivanova. Distinct Lineage Specification Roles for NANOG, OCT4, and SOX2 in Human Embryonic Stem Cells. Cell Stem Cell, 2012; 10 (4): 440 DOI: 10.1016/j.stem.2012.02.016

Cite This Page:

Yale University. "How embryonic stem cells orchestrate human development." ScienceDaily. ScienceDaily, 5 April 2012. <www.sciencedaily.com/releases/2012/04/120405131427.htm>.
Yale University. (2012, April 5). How embryonic stem cells orchestrate human development. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2012/04/120405131427.htm
Yale University. "How embryonic stem cells orchestrate human development." ScienceDaily. www.sciencedaily.com/releases/2012/04/120405131427.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) — President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) — Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) — Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) — President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins