Featured Research

from universities, journals, and other organizations

Cancer-fighting goodness found in cholesterol, study suggests

Date:
April 19, 2012
Source:
Simon Fraser University
Summary:
A team of four scientists is arguing that cholesterol may slow or stop cancer cell growth. They describe how cholesterol-binding proteins called ORPs may control cell growth.

A Simon Fraser University researcher is among four scientists who argue that cholesterol may slow or stop cancer cell growth. They describe how cholesterol-binding proteins called ORPs may control cell growth in A Detour for Yeast Oxysterol Binding Proteins, a paper published in the latest issue of the Journal of Biological Chemistry.

Related Articles


The scientists came to their conclusion while trying to understand how cholesterol moves around inside cells in the fat's journey to cell surfaces where it reinforces their outer membrane.

"The assumption was that ORPs bind and transport cholesterol inside cells in a similar fashion to how lipoproteins bind and move around the fat outside cells through the blood stream," explains Chris Beh. The SFU associate professor of molecular biology and biochemistry co-authored this paper.

Beh and his colleagues noted that genetic changes engineered by them block the ability of ORPs to bind cholesterol but don't stop ORPs from functioning. In fact, these altered ORPs work better and activate other regulator proteins, which in turn trigger a variety of cellular processes that stimulate cell growth.

The scientists believe this happened because cholesterol-binding normally interferes with ORPs' ability to bind to another lipid or fat called PI4P, which is important for cell growth.

"That told us that ORPs probably have nothing to do with moving around cholesterol within cells," says Beh. "Rather cholesterol-binding puts the brakes on ORP's ability to bind to PI4P which, if left unchecked, could accelerate cell growth like crazy," says Beh. "Given that uncontrolled cell growth is a key feature of cancer, this means gaining a better understanding of the true purpose of cholesterol-binding within cells could be important in cancer treatment."

Beh and his colleagues draw on two important facts to support their conclusion.

"First, cancer cells require ORPs to survive," explains Beh. "Second, other scientists have previously shown that a new class of natural compounds that look like steroids or cholesterol can kill a broad spectrum of different cancer cells."

Beh says he and his research partners will now find out exactly which proteins respond to ORP activation and under what circumstances does cholesterol turn off ORP's activation of them.


Story Source:

The above story is based on materials provided by Simon Fraser University. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. T. Beh, C. R. McMaster, K. G. Kozminski, A. K. Menon. A Detour for Yeast Oxysterol Binding Proteins. Journal of Biological Chemistry, 2012; 287 (14): 11481 DOI: 10.1074/jbc.R111.338400

Cite This Page:

Simon Fraser University. "Cancer-fighting goodness found in cholesterol, study suggests." ScienceDaily. ScienceDaily, 19 April 2012. <www.sciencedaily.com/releases/2012/04/120419163553.htm>.
Simon Fraser University. (2012, April 19). Cancer-fighting goodness found in cholesterol, study suggests. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2012/04/120419163553.htm
Simon Fraser University. "Cancer-fighting goodness found in cholesterol, study suggests." ScienceDaily. www.sciencedaily.com/releases/2012/04/120419163553.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Ebola Lockdown

Sierra Leone in Ebola Lockdown

Reuters - News Video Online (Mar. 27, 2015) Millions of people in Sierra Leone are urged to stay at home in a three-day lockdown to help end the country&apos;s Ebola outbreak. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins