Featured Research

from universities, journals, and other organizations

Strong support for once-marginalized theory on Parkinson’s disease

Date:
April 25, 2012
Source:
University of California, San Diego
Summary:
Scientists have used powerful computational tools and laboratory tests to discover new support for a once-marginalized theory about the underlying cause of Parkinson’s disease.

This image shows a construction of a possible ring oligomer position in the cell membrane after four nanoseconds of molecular dynamics simulations. Image courtesy of Igor Tsigelny, San Diego Supercomputer Center and Department of Neurosciences, UC San Diego.
Credit: Image courtesy of University of California, San Diego

University of California, San Diego scientists have used powerful computational tools and laboratory tests to discover new support for a once-marginalized theory about the underlying cause of Parkinson's disease.

The new results conflict with an older theory that insoluble intracellular fibrils called amyloids cause Parkinson's disease and other neurodegenerative diseases. Instead, the new findings provide a step-by-step explanation of how a "protein-run-amok" aggregates within the membranes of neurons and punctures holes in them to cause the symptoms of Parkinson's disease.

The discovery, published in the March 2012 issue of the FEBS Journal, describes how α-synuclein (a-syn), can turn against us, particularly as we age. Modeling results explain how α-syn monomers penetrate cell membranes, become coiled and aggregate in a matter of nanoseconds into dangerous ring structures that spell trouble for neurons.

"The main point is that we think we can create drugs to give us an anti-Parkinson's effect by slowing the formation and growth of these ring structures," said Igor Tsigelny, lead author of the study and a research scientist at the San Diego Supercomputer Center and Department of Neurosciences, both at UC San Diego.

Familial Parkinson's disease is caused in many cases by a limited number of protein mutations. One of the most toxic is A53T. Tsigelny's team showed that the mutant form of α-syn not only penetrates neuronal membranes faster than normal α-syn, but the mutant protein also accelerates ring formation.

"The most dangerous assault on the neurons of Parkinson's patients appears to be the relatively small α-syn ring structures themselves," said Tsigelny. "It was once heretical to suggest that these ring structures, rather than long fibrils found in neurons of people having Parkinson's disease, were responsible for the symptoms of the disease; however, the ring theory is becoming more and more accepted for this neurodegenerative disease and others such as Alzheimer's disease. Our results support this shift in thinking."

The modeling results also are consistent with the electron microscopy images of neurons in Parkinson's disease patients; the damaged neurons are riddled with ring structures.

Wasting no time, the modeling discoveries have spawned an intense hunt at UC San Diego for drug candidates that block ring formation in neuron membranes. The sophisticated modeling required involves a complex realm of science at the intersection of chemistry, physics, and statistical probabilities. A kaleidoscope of interacting forces in this realm makes α-syn proteins bump and tremble like they're in an earthquake, coil and uncoil, and join together in pairs or larger groups of inventive ballroom dancers.

The modeling is creating a much better understanding of the mysterious a-syn protein itself, according to Tsigelny. A few years ago it was shown to accumulate in the central nervous system of patients with Parkinson's disease and a related disorder called dementia with Lewy bodies.

The new modeling study has revealed precisely how two α-syn proteins insert their molecular toes into the membrane of a neuron, wiggle into it in only a few nanoseconds and immediately join together as a pair. The pair isn't itself toxic; however, when more α-syn proteins join the dance, a key threshold is eventually crossed; polymerization accelerates into a ring structure that perforates the membrane, damaging the cell.

Tsigelny said many ring structures may be required to actually kill neurons, which are known for their durability. The nerve cells may be able to repair dozens of ring-induced perforations, keeping pace with a-syn assault. But at some point, the rate of perforations surpasses the ability of neurons to repair them. As a result, symptoms of Parkinson's disease gradually appear and worsen.

"We think we can create a drug that stops the α-syn polymerization at the point of non-propagating dimers," Tsigelny said. "By interrupting the polymerization at this crucial step, we may be able to slow the disease significantly."

Tsigelny's research team included Yuriy Sharikov, with SDSC and UC San Diego's Department of Neurosciences; Wolfgang Wrasidlo, with the university's Moores Cancer Center; and Tania Gonzalez, Paula A. Desplats, Leslie Crews, and Brian Spencer, all with UC San Diego's Department of Neurosciences. The experimental validation studies were performed by Eliezer Masliah, a professor in the UC San Diego departments of Neurosciences and Pathology, and his associates. They relied on 3-D models of proteins, plus molecular dynamics simulations of the proteins, other modeling techniques and cell-culture experiments.

Given their deeper understanding of α-syn polymerization in neurons, they are now focused on understanding how monomers of α-syn stick to one another. Their search for drug candidates will include molecules that induce different conformations of α-syn proteins that are less inclined to stick together. Tsigelny said this effect, even if small, could reduce symptoms.

This computationally intensive approach includes an examination of the many possible three-dimensional arrangements of α-syn dimers, trimmers and tetramers. Pharmaceutical companies have used versions of the approach to develop drug candidates designed to bind to 'anchor residues' or 'hot spots' within target proteins. Algorithms assess in virtual experiments the theoretical ability of thousands of candidate drugs to bind to human proteins in the ever-expanding database of known 3-D structures of those proteins.

However, attempts to find drugs this way have generated promising candidates that fail in clinical trials with expensive regularity.

"Out of these failures we've come to appreciate that proteins change their shapes so often that what would appear to be a primary drug target may be present one nanosecond, gone the next, or it wasn't relevant in the first place," said Tsigelny, a physicist-turned-drug-designer.

Tsigelny's approach takes advantage of classical drug-discovery algorithms, but adds additional analytical techniques to expand the search to include how a target protein's conformations change in response to the forces operating on the scale of molecules.

"Sometimes, the drug-discovery models, despite being 'nice looking,' can be completely wrong," Tsigelny said. "Scientists involved in drug discovery need to know when and to what extent to trust them. Even a slight shift in a cell's environment can profoundly change the interactions of proteins with neighboring molecules. We think it's realistically possible to design a drug to treat neurodegenerative diseases such as Parkinson's disease and other diseases like diabetes with a more fundamental understanding of the proteins involved in those diseases."

The research was funded by grants from the National Institutes of Health and Department of Energy, with computational support from Argonne National Laboratory's IBM Blue Gene supercomputer as well as computational resources at SDSC.


Story Source:

The above story is based on materials provided by University of California, San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. Igor F. Tsigelny, Yuriy Sharikov, Wolfgang Wrasidlo, Tania Gonzalez, Paula A. Desplats, Leslie Crews, Brian Spencer, Eliezer Masliah. Role of α-synuclein penetration into the membrane in the mechanisms of oligomer pore formation. FEBS Journal, 2012; 279 (6): 1000 DOI: 10.1111/j.1742-4658.2012.08489.x

Cite This Page:

University of California, San Diego. "Strong support for once-marginalized theory on Parkinson’s disease." ScienceDaily. ScienceDaily, 25 April 2012. <www.sciencedaily.com/releases/2012/04/120425115314.htm>.
University of California, San Diego. (2012, April 25). Strong support for once-marginalized theory on Parkinson’s disease. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2012/04/120425115314.htm
University of California, San Diego. "Strong support for once-marginalized theory on Parkinson’s disease." ScienceDaily. www.sciencedaily.com/releases/2012/04/120425115314.htm (accessed August 20, 2014).

Share This




More Health & Medicine News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Freetown a City on Edge

Ebola-Hit Sierra Leone's Freetown a City on Edge

AFP (Aug. 19, 2014) Residents of Sierra Leone's capital voice their fears as the Ebola virus sweeps through west Africa. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com
101-Year-Old Working Man Has All The Advice You Need

101-Year-Old Working Man Has All The Advice You Need

Newsy (Aug. 19, 2014) Herman Goldman has worked at the same lighting store for almost 75 years. Find out his secrets to a happy, productive life. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
American Ebola Patient Apparently Improving, Outbreak Is Not

American Ebola Patient Apparently Improving, Outbreak Is Not

Newsy (Aug. 19, 2014) Nancy Writebol, an American missionary who contracted Ebola, is apparently getting better, according to her husband. The outbreak, however, is not. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins