Featured Research

from universities, journals, and other organizations

Under 'dark halo' old galaxies have many more stars

Date:
May 1, 2012
Source:
University of Oxford
Summary:
Some of the oldest galaxies in the Universe have three times more stellar mass, and so many more stars, than all current models of galaxy evolution predict.

Omega Centauri: the tiny red stars (blue is hot red is cold) are just the sort of faint stars that can be imaged in a nearby cluster like this one but cannot be seen in distant galaxies. However, by measuring their combined mass contribution it is possible to discover that old galaxies are dominated by little red stars like these.
Credit: NASA/ESA/Anderson/van der Marel

Some of the oldest galaxies in the Universe have three times more stellar mass, and so many more stars, than all current models of galaxy evolution predict.

Related Articles


The finding comes from the Atlas3D international team, led by an Oxford University scientist, who found a way to remove the 'halo' of dark matter that has clouded previous calculations.The team's analysis means that all current models, which assumed for decades that the light we observe from a galaxy can be used to infer its stellar mass, will have to be revised.

It also suggests that researchers have a new riddle to ponder: exactly how galaxies forming so early in the life of the Universe got to be massive so fast.

A report of the research is published in this week's Nature.

'The light we see from galaxies is just the tip of the iceberg, but what we really need to measure are galaxy masses that all models directly predict,' said Dr Michele Cappellari of Oxford University's Department of Physics, who led the work. 'Galaxies can contain huge numbers of small stars, planets or black holes that have lots of mass but give out very little or no light at all.

'Up until now models assumed that stellar light could be used to infer the stellar masses and any remaining discrepancy with the observed total mass could be hidden behind a "halo" of dark matter. Our analysis shows that they can't hide any longer: galaxies are diverse and some have many more stars and are even stranger than we'd assumed.'

Up to now the key limitation on what it was possible to say about the stellar mass of galaxies was the difficulty in separating this out from the mass contributed by dark matter. Various attempts from independent groups failed to provide a conclusive answer.

The new analysis succeeded thanks to the availability of two-dimensional maps of stellar motions for a large sample of galaxies, combined with sophisticated models.

By disentangling stellar mass from dark matter the team was able to show that instead of the relationship between observable light and stellar mass being universal, it varies between different types of galaxies -- with some older galaxies having three times the mass suggested by the light they give off.

Dr Cappellari said: 'The question of how you should turn light from a galaxy into a prediction of its mass has been hotly debated but up until now nobody has been able to kill off the idea that there's a simple and universal way to convert observed light into mass'. We now think we've done that by eliminating the "fuzziness" in models caused by dark matter.

'It's exciting because it reveals how much more there is to discover about how galaxies, and the early Universe itself, evolved.'

This research is part of the Atlas3D project and is part-funded by the Science and Technology Facilities Council, the UK sponsors of astronomy and of the William Herschel Telescope (WHT) that was used by the team. Dr Michele Cappellari is supported by a Research Fellowship of the Royal Society.


Story Source:

The above story is based on materials provided by University of Oxford. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michele Cappellari, Richard M. McDermid, Katherine Alatalo, Leo Blitz, Maxime Bois, Frιdιric Bournaud, M. Bureau, Alison F. Crocker, Roger L. Davies, Timothy A. Davis, P. T. de Zeeuw, Pierre-Alain Duc, Eric Emsellem, Sadegh Khochfar, Davor Krajnović, Harald Kuntschner, Pierre-Yves Lablanche, Raffaella Morganti, Thorsten Naab, Tom Oosterloo, Marc Sarzi, Nicholas Scott, Paolo Serra, Anne-Marie Weijmans, Lisa M. Young. Systematic variation of the stellar initial mass function in early-type galaxies. Nature, 2012; 484 (7395): 485 DOI: 10.1038/nature10972

Cite This Page:

University of Oxford. "Under 'dark halo' old galaxies have many more stars." ScienceDaily. ScienceDaily, 1 May 2012. <www.sciencedaily.com/releases/2012/05/120501211411.htm>.
University of Oxford. (2012, May 1). Under 'dark halo' old galaxies have many more stars. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2012/05/120501211411.htm
University of Oxford. "Under 'dark halo' old galaxies have many more stars." ScienceDaily. www.sciencedaily.com/releases/2012/05/120501211411.htm (accessed October 26, 2014).

Share This



More Space & Time News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) — China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) — The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins