Featured Research

from universities, journals, and other organizations

Simulating reality: Less memory required on quantum computer than on classical computer, study shows

Date:
May 3, 2012
Source:
Bristol University
Summary:
Simulations of reality would require less memory on a quantum computer than on a classical computer, new research has shown. The study demonstrates a new way in which computers based on quantum physics could beat the performance of classical computers.

Diagram illustrating how a simulator for a stochastic process can be thought of a physical system that stores select information about past outputs, and uses them to generate the require statistics for the future.
Credit: Image courtesy of Bristol University

Simulations of reality would require less memory on a quantum computer than on a classical computer, new research from scientists at the University of Bristol, published in Nature Communications, has shown.

The study by Dr Karoline Wiesner from the School of Mathematics and Centre for Complexity Sciences, together with researchers from the Centre for Quantum Technologies in Singapore, demonstrates a new way in which computers based on quantum physics could beat the performance of classical computers.

When confronted with a complicated system, scientists typically strive to identify underlying simplicity which is then articulated as natural laws and fundamental principles. However, complex systems often seem immune to this approach, making it difficult to extract underlying principles.

Researchers have discovered that complex systems can be less complex than originally thought if they allow quantum physics to help: quantum models of complex systems are simpler and predict their behaviour more efficiently than classical models.

A good measure of the complexity of a particular system or process is how predictable it is. For example, the outcome of a fair coin toss is inherently unpredictable and any resources (beyond a random guess) spent on predicting it would be wasted. Therefore, the complexity of such a process is zero.

Other systems are quite different, for example neural spike sequences (which indicate how sensory and other information is represented in the brain) or protein conformational dynamics (how proteins -- the molecules that facilitate biological functions -- undergo structural rearrangement). These systems have memory and are predictable to some extent; they are more complex than a coin toss.

The operation of such complex systems in many organisms is based on a simulation of reality. This simulation allows the organism to predict and thus react to the environment around it. However, if quantum dynamics can be exploited to make identical predictions with less memory, then such systems need not be as complex as originally thought.

Dr Wiesner added: "On a more fundamental level, we found that the efficiency of prediction still does not reach the lower bound given by the principles of thermodynamics -- there is room for improvement. This might hint at a source of temporal asymmetry within the framework of quantum mechanics; that it is fundamentally impossible to simulate certain observable statistics reversibly and hence with perfect efficiency."


Story Source:

The above story is based on materials provided by Bristol University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mile Gu, Karoline Wiesner, Elisabeth Rieper, Vlatko Vedral. Quantum mechanics can reduce the complexity of classical models. Nature Communications, 2012; 3: 762 DOI: 10.1038/ncomms1761

Cite This Page:

Bristol University. "Simulating reality: Less memory required on quantum computer than on classical computer, study shows." ScienceDaily. ScienceDaily, 3 May 2012. <www.sciencedaily.com/releases/2012/05/120503163146.htm>.
Bristol University. (2012, May 3). Simulating reality: Less memory required on quantum computer than on classical computer, study shows. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/05/120503163146.htm
Bristol University. "Simulating reality: Less memory required on quantum computer than on classical computer, study shows." ScienceDaily. www.sciencedaily.com/releases/2012/05/120503163146.htm (accessed October 23, 2014).

Share This



More Computers & Math News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Google's Inbox Is The Latest Gmail Competitor

Google's Inbox Is The Latest Gmail Competitor

Newsy (Oct. 22, 2014) — Google's new e-mail app is meant for greater personalization and allows users to better categorize their mail, but Gmail isn't going away just yet. Video provided by Newsy
Powered by NewsLook.com
Free Math App Is A Teacher's Worst Nightmare

Free Math App Is A Teacher's Worst Nightmare

Newsy (Oct. 22, 2014) — New photo-recognition software from MicroBlink, called PhotoMath, solves linear equations and simple math problems with step-by-step results. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins