Featured Research

from universities, journals, and other organizations

Using electrons to map nanoparticle atomic structures

Date:
May 4, 2012
Source:
DOE/Brookhaven National Laboratory
Summary:
Scientists have shown how a form of nanocrystallography can be carried out using a transmission electron microscope -- an instrument found in many chemistry and materials science laboratories.

With dimensions measuring billionths of a meter, nanoparticles are way too small to see with the naked eye. Yet it is becoming possible for today's scientists not only to see them, but also to look inside at how the atoms are arranged in three dimensions using a technique called nanocrystallography. Trouble is, the powerful machines that make this possible, such as x-ray synchrotrons, are only available at a handful of facilities around the world. The U.S. Department of Energy's Brookhaven National Laboratory is one of them -- home to the National Synchrotron Light Source (NSLS) and future NSLS-II, where scientists are using very bright, intense x-ray beams to explore the small-scale structure of new materials for energy applications, medicine, and more.

But a Brookhaven/Columbia Engineering School team of scientists, in collaboration with researchers at DOE's Argonne National Laboratory (ANL) and Northwestern University, has also been working to develop nanocrystallography techniques that can be used in more ordinary science settings. They have shown how a powerful method called atomic pair distribution function (PDF) analysis -- which normally requires synchrotron x-rays or neutrons to discern the atomic arrangements in nanoparticles -- can be carried out using a transmission electron microscope (TEM) -- an instrument found in many chemistry and materials science laboratories.

The researchers describe the TEM-based data-collection technique and computer-modeling analyses used to extract quantitative nanostructural information in a paper just published in the May 2012 issue of the journal Zeitschrift fur Kristallographie.

"The ability to collect PDF data using an electron microscope places this powerful nanocrystallographic analysis method into the hands of scientists who need it most -- the people synthesizing novel nanoparticles and nanostructures," said Simon Billinge, a researcher at both Brookhaven and Columbia University's School of Engineering and Applied Science and a long-term user of the NSLS, who led the research.

"State-of-the-art experiments will still be carried out at x-ray synchrotrons and high-tech neutron-scattering facilities," said Billinge, a professor of Materials Science and Applied Physics and Applied Mathematics at Columbia Engineering. "But this new development removes significant barriers to more widespread use of the method, potentially making PDF part of the standard toolkit in materials synthesis labs. It's rather like moving nanocrystallography from being available only with a prescription to being available over the counter," he said.

In both the synchrotron and TEM-based methods, the essential technique is the same: bombard a sample with a beam -- x-rays, in the case of a synchrotron, or electrons at a TEM -- and measure how the rays/particles interact with and bounce off the atoms in the sample. The result is a diffraction pattern that can be translated into measurements of the distribution of distances between pairs of particles within a given volume -- the atomic pair distribution function (PDF). Scientists then use computational programs to convert the PDFs into 3-D models of atomic structure.

Electron diffraction had been used to study the structure of molecules in the gas phase and amorphous thin films, but initially, scientists didn't think that electrons would be appropriate for obtaining reliable PDFs from critical nanocrystalline materials because, unlike x-ray photons, electrons scatter strongly, distorting the diffraction pattern. This new work demonstrates that, under the right circumstances and with the correct data processing, quantitatively reliable PDFs of small nanoparticles -- precisely the ones that are difficult to characterize using standard methods -- can be obtained with the TEM.

Another advantage is that the technique allows analysis of atomic-level structural arrangements using the same tool already used to obtain low- and high-resolution images and chemical information for nanostructures -- that is, the same TEM can be used to provide complementary kinds of information.

"The fact that the real-space images and the diffraction data suitable for structural analysis can be obtained at the same time from the same region of a material results in more complete information for the characterization of the sample," said Milinda Abeykoon, a postdoctoral researcher at Brookhaven and the first author of the paper.

In the current study, scientists working with co-author Mercouri Kanatzidis at Northwestern University and ANL synthesized nanocrystalline thin films and gold and sodium chloride (NaCl) nanoparticles and used a TEM at Northwestern to acquire PDFs of these samples. The Brookhaven/Columbia group studied similar samples using synchrotron x-rays at NSLS, and analyzed all the data before comparing the resulting PDFs and atomic structures.

The PDFs from the x-ray and electron data were highly similar.

"In some cases the strong electron scattering did introduce some distortions in the PDF, as originally feared," Billinge said. "However, surprisingly these problems only affected certain less important structural parameters -- and even resulted in an enhancement of the signal in a way that may be used in the future to yield a higher resolution measurement. That was an unexpected gift!"

The research team is continuing to look for ways to remove barriers to data processing to make the method more straightforward -- and move it from proof-of-principle concept into widespread standard use.


Story Source:

The above story is based on materials provided by DOE/Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. M. Milinda Abeykoon, Christos D. Malliakas, Pavol Juhás, Emil S. Bozin, Mercouri G. Kanatzidis, Simon J. L. Billinge. Quantitative nanostructure characterization using atomic pair distribution functions obtained from laboratory electron microscopes. Zeitschrift für Kristallographie, 2012; 227 (5): 248 DOI: 10.1524/zkri.2012.1510

Cite This Page:

DOE/Brookhaven National Laboratory. "Using electrons to map nanoparticle atomic structures." ScienceDaily. ScienceDaily, 4 May 2012. <www.sciencedaily.com/releases/2012/05/120504110404.htm>.
DOE/Brookhaven National Laboratory. (2012, May 4). Using electrons to map nanoparticle atomic structures. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/05/120504110404.htm
DOE/Brookhaven National Laboratory. "Using electrons to map nanoparticle atomic structures." ScienceDaily. www.sciencedaily.com/releases/2012/05/120504110404.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins