Featured Research

from universities, journals, and other organizations

Bats, whales, and bio-sonar: New findings about whales’ foraging behavior reveal surprising evolutionary convergence

Date:
May 8, 2012
Source:
Acoustical Society of America (ASA)
Summary:
Though they evolved separately over millions of years in different worlds of darkness, bats and toothed whales use surprisingly similar acoustic behavior to locate, track, and capture prey using echolocation, the biological equivalent of sonar. Now researchers have shown that the acoustic behavior of these two types of animals while hunting is eerily similar.

Flying foxes. Victoria, Australia.
Credit: iStockphoto/Craig Dingle

Though they evolved separately over millions of years in different worlds of darkness, bats and toothed whales use surprisingly similar acoustic behavior to locate, track, and capture prey using echolocation, the biological equivalent of sonar. Now a team of Danish researchers has shown that the acoustic behavior of these two types of animals while hunting is eerily similar. The findings were made possible by a new type of whale tag that allows scientists, for the first time, to track whales' foraging behavior in the wild.

Related Articles


The researchers will present their results at the Acoustics 2012 meeting in Hong Kong, May 13-18, a joint meeting of the Acoustical Society of America (ASA), Acoustical Society of China, Western Pacific Acoustics Conference, and the Hong Kong Institute of Acoustics.

Bats and toothed whales (which include dolphins and porpoises) had many opportunities to evolve echolocation techniques that differ from each other, since their nearest common ancestor was incapable of echolocation. Nevertheless -- as scientists have known for years -- bats and toothed whales rely on the same range of ultrasonic frequencies, between 15 to 200 kilohertz, to hunt their prey. (For comparison, the human hearing range is between 20 hertz to 20 kilohertz.) This overlap in frequencies is surprising because sound travels about five times faster in water than in air, giving toothed whales an order of magnitude more time than bats to make a choice about whether to intercept a potential meal.

Now, thanks to new technology that records what a whale hears as well as how it moves in the wild, Peter Teglberg Madsen of Aarhus University in Denmark and Annemarie Surlykke of the University of Southern Denmark have uncovered more similarities in the animals' acoustic tactics.

Bats increase the number of calls per second (what researchers call a "buzz rate") while in pursuit of prey. Whales were thought to maintain a steady rate of calls or clicks no matter how far they were from a target. But the new research shows that wild whales also increase their rate of calls or clicks during a kill -- and that whales' buzz rates are nearly identical to that of bats, at about 500 calls or clicks per second.

"On a purely physical basis, you would predict that whales and bats would operate at different [echolocation] rates and frequencies," Madsen says. "But instead, they operate at the same rates and frequencies." The similarities support the idea that the acoustic behavior of bats and whales may be defined by the auditory processing limitations of the mammalian brain.

Until now, Madsen continues, "it was not known how [a whale] would coordinate its acoustic behavior" in the wild to intercept its prey.

To track whales' hunting behavior in the wild, researchers relied on a new device called the DTAG, which was developed by electrical engineer Mark Johnson at the Woods Hole Oceanographic Institution in Woods Hole, Mass. The DTAG attaches to a whale's skin via suction cup and records ultrasonic frequencies (allowing scientists to analyze what a whale hears) as well as inertia and pressure readings (which allow scientists to reconstruct a whale's movements in the water in three dimensions).

By making it possible for scientists to track whales' foraging behavior in more detail, the new tags will also help conservationists to assess environmental impacts on whales' behavior, Madsen says.


Story Source:

The above story is based on materials provided by Acoustical Society of America (ASA). Note: Materials may be edited for content and length.


Cite This Page:

Acoustical Society of America (ASA). "Bats, whales, and bio-sonar: New findings about whales’ foraging behavior reveal surprising evolutionary convergence." ScienceDaily. ScienceDaily, 8 May 2012. <www.sciencedaily.com/releases/2012/05/120508151958.htm>.
Acoustical Society of America (ASA). (2012, May 8). Bats, whales, and bio-sonar: New findings about whales’ foraging behavior reveal surprising evolutionary convergence. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2012/05/120508151958.htm
Acoustical Society of America (ASA). "Bats, whales, and bio-sonar: New findings about whales’ foraging behavior reveal surprising evolutionary convergence." ScienceDaily. www.sciencedaily.com/releases/2012/05/120508151958.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins