Featured Research

from universities, journals, and other organizations

Wind-driven Mars tumbleweed rover to roll through rocky terrain?

Date:
May 23, 2012
Source:
North Carolina State University
Summary:
New research shows that a wind-driven "tumbleweed" Mars rover would be capable of moving across rocky Martian terrain -- findings that could also help with designing the best possible vehicle.

This is a model of a tumbleweed rover.
Credit: North Carolina State University

New research from North Carolina State University shows that a wind-driven "tumbleweed" Mars rover would be capable of moving across rocky Martian terrain -- findings that could also help the National Aeronautics and Space Administration (NASA) design the best possible vehicle.

"There is quite a bit of interest within NASA to pursue the tumbleweed rover design, but one of the questions regarding the concept is how it might perform on the rocky surface of Mars," says Dr. Andre Mazzoleni, an associate professor of mechanical and aerospace engineering (MAE) at NC State and co-author of a paper describing the research. "We set out to address that question."

Mazzoleni and Dr. Alexander Hartl, an adjunct professor of MAE at NC State, developed a computer model to determine how varying the diameter and mass of a tumbleweed rover would affect its speed and ability to avoid getting stuck in Martian rock fields. Rock fields are common on the surface of Mars, which averages one rock per square meter.

"We found that, in general, the larger the diameter, and the lower the overall weight, the better the rover performs," Mazzoleni says. In addition, the study found that a tumbleweed rover would need to have a diameter of at least six meters in order to achieve an acceptable level of performance -- meaning the rover could move through rock fields without getting stuck.

Using the model, the researchers also found that tumbleweed rovers are more likely to bounce than roll across the surface, due to the spacing of the rocks and the size of the rovers.

"Computer simulations are crucial for designing Mars rovers because the only place where you find Martian conditions is on Mars," says Mazzoleni. "Earth-based testing alone cannot establish whether a particular design will work on Mars." Mars has approximately three-eighths of Earth's gravity. And the atmospheric density on the surface of Mars is only duplicated around 100,000 feet above Earth's surface.

Tumbleweed rovers are attractive because they can cover much larger distances, and handle rougher terrain, than the rovers that have already been sent to Mars -- such as Spirit and Opportunity. "This model is a tool NASA can use to assess the viability of different designs before devoting the time and expense necessary to build prototypes," Mazzoleni says.

While tumbleweed rovers would lack the precise controls of the wheeled rovers, they would also not rely on a power supply for mobility -- they would be literally blown across the Martian landscape by the wind.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexandre E. Hartl, Andre P. Mazzoleni. Terrain Modeling and Simulation of a Tumbleweed Rover Traversing Martian Rock Fields. Journal of Spacecraft and Rockets, 2012; 49 (2): 401 DOI: 10.2514/1.A32132

Cite This Page:

North Carolina State University. "Wind-driven Mars tumbleweed rover to roll through rocky terrain?." ScienceDaily. ScienceDaily, 23 May 2012. <www.sciencedaily.com/releases/2012/05/120523114839.htm>.
North Carolina State University. (2012, May 23). Wind-driven Mars tumbleweed rover to roll through rocky terrain?. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2012/05/120523114839.htm
North Carolina State University. "Wind-driven Mars tumbleweed rover to roll through rocky terrain?." ScienceDaily. www.sciencedaily.com/releases/2012/05/120523114839.htm (accessed September 14, 2014).

Share This



More Space & Time News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

International Space Station Crew Returns Safely To Earth

International Space Station Crew Returns Safely To Earth

Newsy (Sep. 11, 2014) The three-man crew touched down in Kazakhstan Wednesday after more than five months of science experiments in orbit. Video provided by Newsy
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Europe Readies 'space Plane' For Sub-Orbital Test Flight

Europe Readies 'space Plane' For Sub-Orbital Test Flight

AFP (Sep. 10, 2014) The European Space Agency on Tuesday put the final touches to its first-ever "space plane" before blasting it into sub-orbit for tests aimed at eventually paving the way to the continent's first space shuttle. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins