Featured Research

from universities, journals, and other organizations

Math predicts size of clot-forming cells

Date:
May 25, 2012
Source:
University of California - Davis
Summary:
Mathematicians have helped biologists figure out why platelets, the cells that form blood clots, are the size and shape that they are. Because platelets are important both for healing wounds and in strokes and other conditions, a better understanding of how they form and behave could have wide implications.

UC Davis mathematicians have helped biologists figure out why platelets, the cells that form blood clots, are the size and shape that they are. Because platelets are important both for healing wounds and in strokes and other conditions, a better understanding of how they form and behave could have wide implications.

"Platelet size has to be very specific for blood clotting," said Alex Mogilner, professor of mathematics, and neurobiology, physiology and behavior at UC Davis and a co-author of the paper, published this week in the journal Nature Communications. "It's a longstanding puzzle in platelet formation, and this is the first quantitative solution."

Mogilner and UC Davis postdoctoral scholars Jie Zhu and Kun-Chun Lee developed a mathematical model of the forces inside the cells that turn into platelets, accurately predicting their final size and shape.

They were collaborating with a team led by Joseph Italiano and Jonathon Thon at Harvard Medical School and Brigham and Women's Hospital, Boston.

Platelets are made by bone marrow cells called megakaryocytes. They bud off first as large, circular pre-platelets, form into a dumbbell-shaped pro-platelet, then finally divide into a standard-sized, disc-shaped platelet. A typical person has about a trillion platelets in circulation at a time, and makes about 100 billion new platelets a day, each living for 8 to 10 days.

Inside the pre- and pro-platelets is a ring of protein microtubules, which exerts pressure to straighten and broaden the nascent cells. But overlying the ring is a rigid cortex of proteins that prevents the platelets from expanding.

By tweaking the number of microtubules in the bundles, Mogilner, Zhu and Lee found that they could correctly predict how pro-platelets would flip into a dumbbell shape, as well as the size and shape of mature platelets.

The work grew out of a long-standing collaboration between Mogilner and the Harvard team -- the kind of cross-disciplinary research that makes UC Davis a center for innovation. It was supported by the National Institutes of Health and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan N Thon, Hannah Macleod, Antonija Jurak Begonja, Jie Zhu, Kun-Chun Lee, Alex Mogilner, John H. Hartwig, Joseph E. Italiano. Microtubule and cortical forces determine platelet size during vascular platelet production. Nature Communications, 2012; 3: 852 DOI: 10.1038/ncomms1838

Cite This Page:

University of California - Davis. "Math predicts size of clot-forming cells." ScienceDaily. ScienceDaily, 25 May 2012. <www.sciencedaily.com/releases/2012/05/120525165217.htm>.
University of California - Davis. (2012, May 25). Math predicts size of clot-forming cells. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/05/120525165217.htm
University of California - Davis. "Math predicts size of clot-forming cells." ScienceDaily. www.sciencedaily.com/releases/2012/05/120525165217.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins