Featured Research

from universities, journals, and other organizations

Super-sensitive tests could detect diseases earlier

Date:
May 27, 2012
Source:
Imperial College London
Summary:
Scientists have developed an ultra-sensitive test that should enable them to detect signs of a disease in its earliest stages.

Scientists have developed an ultra-sensitive test that should enable them to detect signs of a disease in its earliest stages, in research published May 27in the journal Nature Materials.

Related Articles


The scientists, from Imperial College London and the University of Vigo, have created a test to detect particular molecules that indicate the presence of disease, even when these are in very low concentrations. There are already tests available for some diseases that look for such biomarkers using biological sensors or 'biosensors'. However, existing biosensors become less sensitive and predictable at detecting biomarkers when they are in very low concentrations, as occurs when a disease is in its early stages.

In the new study, the researchers demonstrated that the new biosensor test can find a biomarker associated with prostate cancer, called Prostate Specific Antigen (PSA). However, the team say that the biosensor can be easily reconfigured to test for other diseases or viruses where the related biomarker is known.

Professor Molly Stevens, senior author of the study from the Departments of Materials and Bioengineering at Imperial College London, said: "It is vital to detect diseases at an early stage if we want people to have the best possible outcomes -- diseases are usually easier to treat at this stage, and early diagnosis can give us the chance to halt a disease before symptoms worsen. However, for many diseases, using current technology to look for early signs of disease can be like finding the proverbial needle in a haystack. Our new test can actually find that needle. We only looked at the biomarker for one disease in this study, but we're confident that the test can be adapted to identify many other diseases at an early stage."

The team demonstrated the effectiveness of their biosensor by testing PSA biomarker samples in solutions containing a complex mixture of blood derived serum proteins. Monitoring the levels of PSA at ultralow concentrations can be crucial in the early diagnosis of the reoccurrence of prostate cancer, but classic detection approaches are not sensitive enough to carry out this analysis with a high degree of accuracy. The new test could enable more reliable diagnosis, but more research will need to be done to further explore its potential.

In their study, the team detected PSA at 0.000000000000000001 grams per millilitre, which is at the limits of current biosensor performance. By comparison, an existing test called an Enzyme-Linked Immunosorbent Assay (ELISA) test can detect PSA at 0.000000001 grams per millilitre, which is nine orders of magnitude more concentrated.

The biosensors used in the new study consist of nanoscopic-sized gold stars floating in a solution containing other blood derived proteins. Attached to the surface of these gold stars are antibodies, which latch onto PSA when they detect it in a sample. A secondary antibody, which has an enzyme called glucose oxidase attached to it, recognises the PSA and creates a distinctive silver crystal coating on the gold stars, which is more apparent when the PSA biomarkers are in low concentrations. This silver coating acts like a signal that PSA is present, and it can be easily detected by scientists using optical microscopes.

The next stage of the research will see the team carrying out further clinical testing to assess the efficacy of the biosensor in detecting a range of different biomarkers associated with conditions such as HIV and other infections. They will also explore ways of commercialising their product.

This research was funded by the European Research Council and via a Marie Curie fellowship.


Story Source:

The above story is based on materials provided by Imperial College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Laura Rodríguez-Lorenzo, Roberto de la Rica, Ramón A. Álvarez-Puebla, Luis M. Liz-Marzán, Molly M. Stevens. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nature Materials, 2012; DOI: 10.1038/nmat3337

Cite This Page:

Imperial College London. "Super-sensitive tests could detect diseases earlier." ScienceDaily. ScienceDaily, 27 May 2012. <www.sciencedaily.com/releases/2012/05/120527153718.htm>.
Imperial College London. (2012, May 27). Super-sensitive tests could detect diseases earlier. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2012/05/120527153718.htm
Imperial College London. "Super-sensitive tests could detect diseases earlier." ScienceDaily. www.sciencedaily.com/releases/2012/05/120527153718.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins