Featured Research

from universities, journals, and other organizations

Marine energy doubled by predicting wave power

Date:
June 26, 2012
Source:
University of Exeter
Summary:
The energy generated from our oceans could be doubled using new methods for predicting wave power. New research could pave the way for significant advancements in marine renewable energy, making it a more viable source of power. The researchers devised a means of accurately predicting the power of the next wave in order to make the technology far more efficient, extracting twice as much energy as is currently possible.

New tools for predicting wave power could double the energy from marine renewables.
Credit: © pwollinga / Fotolia

The energy generated from our oceans could be doubled using new methods for predicting wave power. Research led by the University of Exeter, published (27 June) in the journal Renewable Energy, could pave the way for significant advancements in marine renewable energy, making it a more viable source of power.

Related Articles


The study was carried out by a team of mathematicians and engineers from the University of Exeter and Tel Aviv University. They devised a means of accurately predicting the power of the next wave in order to make the technology far more efficient, extracting twice as much energy as is currently possible.

Marine energy is believed to have the potential to provide the UK with electricity twice over. However, technologies to extract and convert energy from the sea are relatively immature, compared with solar or wind, and are not yet commercially competitive without subsidy. Very substantial progress has been made by the leading device developers, but key challenges remain: preventing devices being damaged by the hostile marine environment; and improving the efficiency of energy capture from the waves. This research addresses both problems by enabling control over the devices that extract wave energy. The key to this is to enable devices to accurately predict the power of the next wave and respond by extracting the maximum energy.

The research focused on point absorbers, commonly-used floating devices with parts that move in response to waves, generating energy which they feed back to the grid. Point absorbers are already known to be much more efficient in the amount of energy they produce if their response closely matches the force of the waves and previous research has looked at trying to increase this efficiency. However, this is the first study that has focused on increasing the device's efficiency by predicting and controlling internal forces of the device caused by forthcoming waves.

The team devised a system, which enables the device to extract the maximum amount of energy by predicting the incoming wave. This information enables a program to actively control the response required for a wave of a particular size. Because the device responds appropriately to the force of the next wave, it is far less likely to be damaged and would not need to be turned off in stormy conditions, as is currently the case.

Lead author Dr Guang Li of the University of Exeter said: "Our research has the potential to make huge advances to the progress of marine renewable energy. There are significant benefits to wave energy but progressing this technology has proved challenging. This is a major step forward and could help pave the way for wave energy to play a significant role in providing our power."

Co-author Dr Markus Mueller of the Environment and Sustainability Institute at the University of Exeter's Cornwall Campus said: "The next step is for us to see how effective this approach could be at a large scale, by testing it in farms of Wave Energy Converters."


Story Source:

The above story is based on materials provided by University of Exeter. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guang Li, George Weiss, Markus Mueller, Stuart Townley, Mike R. Belmont. Wave energy converter control by wave prediction and dynamic programming. Renewable Energy, Volume 48, December 2012, Pages 392-403 DOI: 10.1016/j.renene.2012.05.003

Cite This Page:

University of Exeter. "Marine energy doubled by predicting wave power." ScienceDaily. ScienceDaily, 26 June 2012. <www.sciencedaily.com/releases/2012/06/120626172730.htm>.
University of Exeter. (2012, June 26). Marine energy doubled by predicting wave power. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2012/06/120626172730.htm
University of Exeter. "Marine energy doubled by predicting wave power." ScienceDaily. www.sciencedaily.com/releases/2012/06/120626172730.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) — EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) — A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) — Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins