Featured Research

from universities, journals, and other organizations

Shared pathway links Lou Gehrig's disease with spinal muscular atrophy

Date:
September 27, 2012
Source:
Harvard Medical School
Summary:
Scientists have long known the main proteins that lead to the development of amyotrophic lateral sclerosis and spinal muscular atrophy, respectively. Now research shows that these two motor neuron diseases likely share a pathway that leads to the development of disease.

These are fibroblasts from an unaffected individual (left) and an ALS patient with a FUS mutation. The cell nucleus is shown in blue and the "gems" are the green dots within the nuclei. The nuclei in the white boxes are magnified. Image courtesy of Reed laboratory.
Credit: Image courtesy of Harvard Medical School

Researchers of motor neuron diseases have long had a hunch that two fatal diseases, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), might somehow be linked. A new study confirms that this link exists.

"Our study is the first to link the two diseases on a molecular level in human cells," said Robin Reed, Harvard Medical School professor of cell biology and lead investigator of the study.

The results will be published online in the September 27 issue of Cell Reports. ALS, or Lou Gehrig's disease, which has an adult onset, affects neurons that control voluntary muscles. As a result, muscles start to weaken, and patients eventually lose the ability to move their arms, legs and other parts of the body. In contrast, patients who have SMA tend to be infants and young children. Symptoms are similar to ALS, with lack of ability to control muscles being the major symptom. In both diseases, the most common cause of death is the loss of muscle function in the chest, resulting in respiratory failure.

Previous studies have shown that one of the causes of ALS is mutation of the FUS gene, and that a deficiency in the survival of motor neuron (SMN) protein causes SMA disease. The SMN protein is present in bodies in the nucleus known as Gemini of Coiled Bodies, or gems. Reed's lab connected the FUS protein to the SMN protein and the formation of gems in cellular nuclei.

"Nobody really knows what the function of gems are," said Reed. "The consensus so far is that they might be involved in biogenesis of crucial nuclear RNAs."

The researchers arrived at this pathway by studying human fibroblasts, cells that form the basis of connective tissue. "Unlike other studies of ALS and SMA, in which post-mortem tissue is normally used, we used fibroblasts from patients. These cells are easily accessible because they can be obtained from patients' skin and may provide a better idea of what happens in the human body," said Reed.

Reed and colleagues began the study by showing that the FUS protein is essential for normal gem levels. Without it, gem levels in ALS fibroblasts are much lower than in control fibroblasts.

This feature of ALS fibroblasts led the team to connect the disease with SMA. Previous studies had shown that when cells were deficient in SMN protein, fibroblasts also lacked gems in the nuclei. The loss of gems as a final result in both the SMA and ALS pathways led Reed and her team to believe that they might, in fact, be part of one larger pathway.

"The question now is whether the loss of gems is a cause of the disease or a marker for the disease," said Reed.

Reed is hopeful that even if the loss of gems is a marker, it could be used as a diagnostic tool to determine if someone who is presenting symptoms has ALS. "We will need to find out if the loss of gems is applicable to all cases of ALS or if it is specific to ALS patients with mutations in the FUS gene," added Reed.

Either way, Reed describes these finds as killing two birds with one stone. "This common pathway may mean common treatment and resources."


Story Source:

The above story is based on materials provided by Harvard Medical School. The original article was written by Shraddha Chakradhar. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tomohiro Yamazaki, Shi Chen, Yong Yu, Biao Yan, TylerC. Haertlein, MonicaA. Carrasco, JuanC. Tapia, Bo Zhai, Rita Das, Melanie Lalancette-Hebert, Aarti Sharma, Siddharthan Chandran, Gareth Sullivan, AgnesLumi Nishimura, ChristopherE. Shaw, SteveP. Gygi, NeilA. Shneider, Tom Maniatis, Robin Reed. FUS-SMN Protein Interactions Link the Motor Neuron Diseases ALS and SMA. Cell Reports, 2012; DOI: 10.1016/j.celrep.2012.08.025

Cite This Page:

Harvard Medical School. "Shared pathway links Lou Gehrig's disease with spinal muscular atrophy." ScienceDaily. ScienceDaily, 27 September 2012. <www.sciencedaily.com/releases/2012/09/120927124156.htm>.
Harvard Medical School. (2012, September 27). Shared pathway links Lou Gehrig's disease with spinal muscular atrophy. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2012/09/120927124156.htm
Harvard Medical School. "Shared pathway links Lou Gehrig's disease with spinal muscular atrophy." ScienceDaily. www.sciencedaily.com/releases/2012/09/120927124156.htm (accessed September 30, 2014).

Share This



More Health & Medicine News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How 'Yes Means Yes' Defines Sexual Assault

How 'Yes Means Yes' Defines Sexual Assault

Newsy (Sep. 29, 2014) Aimed at reducing sexual assaults on college campuses, California has adopted a new law changing the standard of consent for sexual activity. Video provided by Newsy
Powered by NewsLook.com
Scientists May Have Found An Early Sign Of Pancreatic Cancer

Scientists May Have Found An Early Sign Of Pancreatic Cancer

Newsy (Sep. 29, 2014) Researchers looked at 1,500 blood samples and determined people who developed pancreatic cancer had more branched chain amino acids. Video provided by Newsy
Powered by NewsLook.com
Colo. Doctors See Cluster of Enterovirus Cases

Colo. Doctors See Cluster of Enterovirus Cases

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Dr.'s Unsure of Cause of Fast-Spreading Virus

Dr.'s Unsure of Cause of Fast-Spreading Virus

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins