Featured Research

from universities, journals, and other organizations

Natural process activating brain's immune cells could point way to repairing damaged brain tissue

Date:
October 21, 2012
Source:
Stanford University Medical Center
Summary:
The brain's key "breeder" cells, it turns out, do more than that. They secrete substances that boost the numbers and strength of critical brain-based immune cells believed to play a vital role in brain health. This finding adds a new dimension to our understanding of how resident stem cells and stem cell transplants may improve brain function.

The brain's key "breeder" cells, it turns out, do more than that. They secrete substances that boost the numbers and strength of critical brain-based immune cells believed to play a vital role in brain health. This finding adds a new dimension to our understanding of how resident stem cells and stem cell transplants may improve brain function.

Related Articles


Many researchers believe that these cells may be able to regenerate damaged brain tissue by integrating into circuits that have been eroded by neurodegenerative disease or destroyed by injury. But new findings by scientists at the Stanford University School of Medicine suggest that another process, which has not been fully appreciated, could be a part of the equation as well. The findings appear in a study that will be published online Oct. 21 in Nature Neuroscience.

"Transplanting neural stem cells into experimental animals' brains shows signs of being able to speed recovery from stroke and possibly neurodegenerative disease as well," said Tony Wyss-Coray, PhD, professor of neurology and neurological sciences in the medical school and senior research scientist at the Veterans Affairs Palo Alto Health Care System. "Why this technique works is far from clear, though, because actually neural stem cells don't engraft well."

Neural stem cells can endure essentially unchanged for decades in two places in the mammalian brain, replicating just enough to meet the routine needs of those regions. In most parts of the brain, they aren't found at all.

While of critical importance to maintaining healthy brain function, true neural stem cells are rare. Far more common are their immediate progeny, which are called neural progenitor cells, or NPCs. These robust, rapidly dividing cells are poised to travel down a committed path of differentiation to yield new brain cells of several different types including neurons.

It's known that treating humans with radiation or drugs that prevent NPC replication causes memory deficits ("chemo brain") and, in children, IQ losses of up to 20 points. Conversely, studies are being initiated to see whether infusing neural stem cells into brains affected by Alzheimer's disease can enhance patients' memory function.

One category of brain cells, microglia, descends not from neural stem cells but from an immune lineage and retains several features of immune cells. "Microglia are the brain's own resident immune cells," Wyss-Coray said. Unlike most other mature brain cells, microglia can proliferate throughout adulthood, especially in response to brain injury. They can, moreover, migrate toward injury sites, secrete various "chemical signaling" substances, and gobble up bits of debris, microbial invaders or entire dead or dying neurons.

Microglia normally are distributed throughout the brain -- rather small, quiescent cells sprouting long, skinny projections that meekly but efficiently survey large areas that, taken together, cover the entire brain. But if this surveillance reveals signs of a disturbance, such as injury or infection, the microglia whirl into action. They begin proliferating and their puny bodies puff up, metamorphosing from mild-mannered Clark Kent-like reporters to buffed Supermen who fly to the scene of trouble, where they secrete substances that can throttle bad actors or call in reinforcements. Within these activated cells, internal garbage disposals called lysosomes form in large numbers and start whirring, ready to make mincemeat out of pathogens or cellular debris.

In addition to their part patrol-officer, part cleanup-crew status, microglia can also secrete substances that help neurons thrive. They also contribute to the ongoing pruning of unneeded connections between neurons that occurs throughout our lives.

But like immune cells elsewhere, said Wyss-Coray, microglia can be a force for evil if they engage in too much or inappropriate activity. They might, for instance, start to remove healthy cells (as occurs in Parkinson's) or stop cleaning up garbage strewn about the brain (for example, Alzheimer's plaque).

In a series of experiments, Wyss-Coray and his colleagues have shown that NPCs secrete substances that activate microglia. First, the researchers observed that microglia were uncharacteristically abundant and activated in the two regions in the mammalian brain where NPCs reside and new neurons are formed. Wondering whether the NPCs might be causing this increased microglial activity, the investigators incubated mouse microglia in a culture medium in which NPCs had previously been steeped. Two days later, they saw that the microglia had multiplied more, expressed different amounts of various signal molecules and featured more lysosomes. "The microglia were ready for action," said Wyss-Coray.

So they injected NPCs into an area of mice's brains where these cells are normally not found. In the same area in the opposing brain hemisphere, they injected a control solution. Again they found significant differences in microglial proliferation and activity, and more microglia in the NPC-injected side had assumed a "Superman" as opposed to a "Clark Kent" body shape. When they repeated this experiment using only the NPCs' "discarded bath water" rather than NPCs themselves, they got similar results.

Clearly NPCs were secreting something, or some things, that were spurring microglia to action.

Using sophisticated lab techniques, the team monitored purified NPCs plus several other cell types found in the brain and assessed nearly 60 different substances known to have powerful cell-to-cell signaling properties. Several such substances, it turned out, were secreted in much larger amounts by NPCs than by the other cell types: most notably, vascular endothelial growth factor, or VEGF -- a well-known molecule produced by many cell types throughout the body. VEGF stimulates the formation of blood vessels and exerts a beneficial effect on neurons. Conversely, drugs that block VEGF (such as Avastin) are frequently used to combat cancer because tumors require an immense blood supply in order to grow quickly.

VEGF is also known to boost microglial proliferation. Because it is produced in such volumes by NPCs, Wyss-Coray's team wanted to see if VEGF alone could mimic any of the changes wrought by NPCs or their culture-medium-borne detritus. So they injected VEGF into mice's right brain hemisphere, and saline solution into the left -- again with the same outcomes. Taking the opposite tack, the team injected NPC-saturated medium devoid of the cells, as they had done earlier. But this time they first used various laboratory techniques to deplete the fluid of the VEGF secreted by its former inhabitants. Doing this almost completely reversed its microglia-activating effects.

"All of this strongly suggests that VEGF produced by NPCs is playing a strong role in influencing microglial behavior," said Wyss-Coray. "This is important, because in all neurodegenerative diseases we know of we see microglia out of control." The new finding may open the door to reprogramming misbehaving microglia to play better with other cells.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University Medical Center. "Natural process activating brain's immune cells could point way to repairing damaged brain tissue." ScienceDaily. ScienceDaily, 21 October 2012. <www.sciencedaily.com/releases/2012/10/121021133924.htm>.
Stanford University Medical Center. (2012, October 21). Natural process activating brain's immune cells could point way to repairing damaged brain tissue. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2012/10/121021133924.htm
Stanford University Medical Center. "Natural process activating brain's immune cells could point way to repairing damaged brain tissue." ScienceDaily. www.sciencedaily.com/releases/2012/10/121021133924.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins