Featured Research

from universities, journals, and other organizations

Circuit diagram of the mouse brain: Scientists aim to analyse a whole mouse brain under the electron microscope

Date:
October 23, 2012
Source:
Max-Planck-Gesellschaft
Summary:
What happens in the brain when we see, hear, think and remember? To be able to answer questions like this, neuroscientists need information about how the millions of neurons in the brain are connected to each other. Scientists have taken a crucial step towards obtaining a complete circuit diagram of the brain of the mouse, a key model organism for the neurosciences. Researchers have developed a method for preparing the whole mouse brain for a special microscopy process. With this, the resolution at which the brain tissue can be examined is so high that the fine extensions of almost every single neuron are visible.

Scanning electron microscopic mosaic of a coronal blockface through a whole mouse brain acquired at 80 nanometer pixel size. Also shown are reconstructions of 50 myelinated axons from the ventroposterolateral nucleus (VPL) of the thalamus from a similarly-prepared sample. Each axon has a unique color.
Credit: MPI f. Medical Research

What happens in the brain when we see, hear, think and remember? To be able to answer questions like this, neuroscientists need information about how the millions of neurons in the brain are connected to each other. Scientists at the Max Planck Institute for Medical Research in Heidelberg have taken a crucial step towards obtaining a complete circuit diagram of the brain of the mouse, a key model organism for the neurosciences. The research group working with Winfried Denk has developed a method for preparing the whole mouse brain for a special microscopy process. With this, the resolution at which the brain tissue can be examined is so high that the fine extensions of almost every single neuron are visible.

Neurons transmit information through their extensions -- the axons -- and form a complex network of connections, which provides the basis for all information processing in the brain. Analysing this network under the microscope is one of the biggest challenges facing the neurosciences. Most axons are less than one micrometre thick, some even smaller than 100 nanometres. "The electron microscope is the only microscope with a high enough resolution to enable individual axons lying next to each other to be distinguished from each other," says Winfried Denk. Despite their minute diameter, axons can become very long and extend from one end of the brain to the other. To obtain an overall picture of a brain, the researchers have to analyse large pieces of tissue.

In 2004, scientists working with Denk developed a new method that enabled them to do just this: "serial block-face" scanning electron microscopy. To examine tissue using this method, it must be fixed, stained and embedded in synthetic material. This works for small pieces of tissue, but up to now it was not possible for tissue the size of a mouse brain. In a current study, Shawn Mikula from Denk's department succeeded in preparing a mouse brain in such a way that he was able to analyse it using block-face microscopy and trace the axons. The Max Planck research group would now like to image a whole brain with the "serial block-face" microscope so that they can study the neuronal connections in the entire mouse brain.

In their latest study, the Heidelberg-based researchers demonstrated that the brain of a mouse can be prepared in a way that enables it to be analysed whole using "block-face" electron microscopy. The challenge facing the scientists was to treat a large piece of tissue so that it is evenly fixed and stained right through to the inside. To do this, they developed a complex process in which the brain is treated in different fixing and staining solutions for days.

With scanning electron microscopy, an electron beam scans the surface of a tissue section. A single electron microscope image thus corresponds to a cross-sectional view through the tissue. To obtain a three-dimensional image of a tissue, it is cut in fine sections using traditional methods, and these are then microscoped individually. This approach is not only tedious, it is also error-prone. Block-face microscopy overcomes this problem. This involves inserting an entire piece of tissue in the microscope and scanning the surface. Only then is a thin section cut, and the layer below is scanned. This makes it easier to combine the data on the computer.

In an initial analysis of the method, the scientists followed the axons of 50 randomly selected neurons and marked them by hand. The axons can be clearly reconstructed using the process. "However, it would take far too long to trace all of the neurons in this way as a mouse brain consists of around 75 million neurons," says Denk. Therefore, the image evaluation must be automated. "Our images have sufficient resolution and contrast to follow all myelinated axons. If we manage to scan an entire brain in the years to come, this should provide a major incentive for computer scientists to develop the necessary analysis methods."

A detailed map of the connections in the brain will make a major contribution to the clarification of neuronal functions. "Every theory on brain function is based on an idea of the corresponding information paths in the brain. It is very important that we find out about the connections between the nodes so that we can distinguish between different models of brain function," explains Denk.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shawn Mikula, Jonas Binding, Winfried Denk. Staining and embedding the whole mouse brain for electron microscopy. Nature Methods, 2012; DOI: 10.1038/nmeth.2213

Cite This Page:

Max-Planck-Gesellschaft. "Circuit diagram of the mouse brain: Scientists aim to analyse a whole mouse brain under the electron microscope." ScienceDaily. ScienceDaily, 23 October 2012. <www.sciencedaily.com/releases/2012/10/121023090530.htm>.
Max-Planck-Gesellschaft. (2012, October 23). Circuit diagram of the mouse brain: Scientists aim to analyse a whole mouse brain under the electron microscope. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2012/10/121023090530.htm
Max-Planck-Gesellschaft. "Circuit diagram of the mouse brain: Scientists aim to analyse a whole mouse brain under the electron microscope." ScienceDaily. www.sciencedaily.com/releases/2012/10/121023090530.htm (accessed October 2, 2014).

Share This



More Plants & Animals News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com
Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Annual Dog Surfing Competition Draws California Crowds

Annual Dog Surfing Competition Draws California Crowds

AFP (Sep. 30, 2014) — The best canine surfers gathered for Huntington Beach's annual dog surfing competition, "Surf City, Surf Dog." Duration: 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins