Featured Research

from universities, journals, and other organizations

Crystals for efficient refrigeration: Can pump or extract heat, even on the nanoscale, for use on computer chips

Date:
November 5, 2012
Source:
Carnegie Institution
Summary:
Researchers have discovered a new efficient way to pump heat using crystals. The crystals can pump or extract heat, even on the nanoscale, so they could be used on computer chips to prevent overheating or even meltdown, which is currently a major limit to higher computer speeds.

The image shows a molecular dynamics simulation of lithium niobate under a time varying electric field, which changes the sign of the polarization. Red is niobium, green is oxygen, and lithium shows a range of colors for different time steps. The niobium and oxygen are shown only for one time step for clarity. The image shows a small part of the actual simulation.
Credit: Maimon Rose and Ronald Cohen Carnegie Institution

Researchers at the Carnegie Institution have discovered a new efficient way to pump heat using crystals. The crystals can pump or extract heat, even on the nanoscale, so they could be used on computer chips to prevent overheating or even meltdown, which is currently a major limit to higher computer speeds.

The research is published in the Physical Review Letters.

Ronald Cohen, staff scientist at Carnegie's Geophysical Laboratory and Maimon Rose, originally a high school intern now at the University of Chicago carried out the research. They performed simulations on ferroelectric crystals -- materials that have electrical polarization in the absence of an electric field. The electrical polarization can be reversed by applying an external electrical field. The scientists found that the introduction of an electric field causes a giant temperature change in the material, dubbed the electrocaloric effect, far above a temperature to a so-called paraelectric state.

"The electrocaloric effect pumps heat through changing temperature by way of an applied electric field," explained Cohen. "The effect has been known since the 1930s, but has not been exploited because people were using materials with high transition temperatures. We found that the effect is larger if the ambient temperature is well above the transition temperature, so low transition temperature materials are preferred."

Ferroelectrics become paraelectric -- that is, have no polarization under zero electric field above their transition temperature, which is the temperature at which a material changes its state from ferroelectric to paraelectric.

Rose and Cohen used atomic-scale molecular dynamics simulations, where they followed the behavior of atoms in the ferroelectric lithium niobate as functions of temperature and an electrical field. Maimon Rose started this work as a high school summer intern and is now in his second year as an undergraduate in biology at the University of Chicago. He worked on the project during breaks as an intern supported by EFree, DOE Energy Frontier Research Center at the Geophysical Laboratory. Rose remarked, "Lithium niobate had not been studied before like this. We were pretty surprised to see such a huge temperature change."


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Maimon Rose, R. Cohen. Giant Electrocaloric Effect Around T_{c}. Physical Review Letters, 2012; 109 (18) DOI: 10.1103/PhysRevLett.109.187604

Cite This Page:

Carnegie Institution. "Crystals for efficient refrigeration: Can pump or extract heat, even on the nanoscale, for use on computer chips." ScienceDaily. ScienceDaily, 5 November 2012. <www.sciencedaily.com/releases/2012/11/121105114659.htm>.
Carnegie Institution. (2012, November 5). Crystals for efficient refrigeration: Can pump or extract heat, even on the nanoscale, for use on computer chips. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2012/11/121105114659.htm
Carnegie Institution. "Crystals for efficient refrigeration: Can pump or extract heat, even on the nanoscale, for use on computer chips." ScienceDaily. www.sciencedaily.com/releases/2012/11/121105114659.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com
Jets Fuel Jump in Boeing's Revenue

Jets Fuel Jump in Boeing's Revenue

Reuters - Business Video Online (Apr. 23, 2014) A sharp rise in revenue for commercial jets offset a decline in Boeing's defense business. And a big increase in deliveries lifted profitability. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins