Featured Research

from universities, journals, and other organizations

Revolutionary type of gel discovered

Date:
November 5, 2012
Source:
Schweizerischer Nationalfonds zur Foerderung der wissenschaftlichen Forschung
Summary:
Controlling and modifying at will the transparency, electrical properties, and stiffness of a gel are among the promises of new research by scientists in Switzerland. Their discovery marks an important step for materials used in healthcare, high-tech, and the cosmetics industry.

Controlling and modifying at will the transparency, electrical properties, and stiffness of a gel are among the promises of new research by scientists supported by the Swiss National Science Foundation (SNSF). Their discovery marks an important step for materials used in healthcare, high-tech, and the cosmetics industry.

Gels can be found everywhere: from contact lenses to ink, from sensors to medical electrodes and even breast implants. Their ultra-absorbent properties, flexibility, and grip make them appealing to researchers and manufacturers. They consist of a network of solids that can retain up to 99% of liquid while maintaining their shape. EPFL researchers have just publishedhow to combine two gels in such a way that they can monitor and change, almost at will, the properties of the new combined material.

The study appears in the Proceedings of the National Academy of Sciences.

In sight and in focus

Involved in research on lens transparency, Giuseppe Foffi had the idea to transpose his research to gels in general. In the case of the eye, this SNSF Professor highlighted how the mixture of two proteins with very specific characteristics rendered the organ transparent. Applied to gels, this method can predict how the two materials will aggregate to form a new one. Work undertaken in Cambridge by Erika Eiser and his group has pro-duced a material that researchers have named "bigel." The researchers managed to create it so quickly by combining DNA fragments with nanoparticles, a technique in which they are specialized. The DNA can be connected with different particles to produce gels with various pre-determined properties.

Reversibility

By varying the size of the network of "bigel" particles on the microscopic level, it is possible to adjust light in a controlled manner. The physicists can determine to what light the gel is sensitive, by becoming more or less opaque. This is an interesting property in the field of photonics, which seeks to modulate, amplify, or filter light transmissions. The same type of plasticity is also possible for electrical particles. Another interesting characteristic of "bigels" is their reversibility. Just heat them to separate the components. It is enough to see the particular way that solid particles adjust to obtain other features, for example optics, from the same compounds. It is possible to have materials whose properties are dependent on temperature.

A myriad of possibilities

This discovery opens the door to a great deal of applications, for example, by associating molecules with specific electromagnetic properties, but also by altering the geometry of the particles network. "We could apply these methods to a wealth of materials other than gels, foams or inks," says Giuseppe Foffi. To explore this new area, the researcher must expand from the micro- to the nanometric level. He also wants to explore "trigels" and other "polygels."


Story Source:

The above story is based on materials provided by Schweizerischer Nationalfonds zur Foerderung der wissenschaftlichen Forschung. Note: Materials may be edited for content and length.


Journal Reference:

  1. Francesco Varrato, Lorenzo Di Michele, Maxim Belushkin, Nicolas Dorsaz, Simon H. Nathan, Erika Eiser and Giuseppe Foffi. Arrested demixing opens novel route from gels to bigels. Proceedings of the National Academy of Sciences, 2012 DOI: 10.1073/pnas.1214971109

Cite This Page:

Schweizerischer Nationalfonds zur Foerderung der wissenschaftlichen Forschung. "Revolutionary type of gel discovered." ScienceDaily. ScienceDaily, 5 November 2012. <www.sciencedaily.com/releases/2012/11/121105161212.htm>.
Schweizerischer Nationalfonds zur Foerderung der wissenschaftlichen Forschung. (2012, November 5). Revolutionary type of gel discovered. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2012/11/121105161212.htm
Schweizerischer Nationalfonds zur Foerderung der wissenschaftlichen Forschung. "Revolutionary type of gel discovered." ScienceDaily. www.sciencedaily.com/releases/2012/11/121105161212.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins