Featured Research

from universities, journals, and other organizations

Testing pain killers on humans could save money and speed the arrival of new drugs, experts say

Date:
November 8, 2012
Source:
Wiley
Summary:
Deliberately inflicting carefully controlled painful stimuli on human volunteers and seeing how well specific drugs reduce the feeling of pain can be an effective way of testing new drugs. So conclude two researchers who reviewed the available literature on these types of tests in a new paper.

Deliberately inflicting carefully controlled painful stimuli on human volunteers and seeing how well specific drugs reduce the feeling of pain can be an effective way of testing new drugs. So conclude two researchers who reviewed the available literature on these types of tests in a paper published in the British Journal of Pharmacology.

Related Articles


Pain is important. It acts as an alarm mechanism, warning us that something is about to cause physical damage. It could be triggered by something physical like a cut or bruise, or a temperature driven stimulus such as extreme heat or cold. It could be caused internally by injuries where nerves get trapped. Pain can also become a long-term sensation that lasts long after the damage has occurred. In this case it is referred to as 'chronic' pain, and this can be particularly hard to treat.

The need to tackle pain is huge. A fifth of Europeans suffer from daily pain requiring treatment, with the proportion increasing in people over 70 years old. But pain control is still often insufficient or unsatisfactory because the available drugs fail to provide adequate relief or produce major side effects. Pain has therefore remained one of the major healthcare problems generating estimated socio-economic costs of $560-635 billion/year in the USA alone.

Finding new drugs is complicated because you can't measure pain directly. In animal models you have to watch animals as they respond to stimuli, and in human trials you have to get individuals to report how they feel. On top of this, the body has a number of different ways of detecting pain- generating stimuli, and each mechanism is likely to respond to a different set of pain-killing drugs.

Based in Frankfurt am Main, Germany, Bruno Georg Oertel and Jörn Lötsch started out with a theory. "We thought that if a pain-relieving drug was effective in a particular experimental pain model and also in a specific type of clinical pain, then the experimental model should be predictive for the particular clinical setting," says Lötsch, who works in the Institute of Clinical Pharmacology at the Goethe-University.

They found that overall, human experimental pain models were able to predict how well a drug worked in patients better than previously realised. "Not using these pain models in drug development seems to be unjustified -- in fact they should be used routinely in drug development programmes," says Oertel, who works in the Fraunhofer Project Group for Translational Medicine and Pharmacology (TMP), an initiative supported by the Hessian Excellence Initiative ("LOEWE") that runs at the junction between pharmacological research in academia and in the pharmaceutical industry.

The process isn't simple though as not every model can predict every clinical setting. "However, by analysing the way that drugs work in experimental and clinical settings, we identified that different sets of experimental pain models, rather than single models, may be best suited to provide cost-effective yet predictive studies in analgesic drug development," says Lötsch.

"It is difficult and unusual to undertake truly translational research in pharmacology. Here, Jörn Lötsch and Bruno G. Oertel have focused on experiments on humans to bridge the gap between animal research and clinical pharmacology. The review examines how well clinical analgesia is predicted by human experimental pain models, with a view to guiding model selection in phase I studies. The authors identify important disparities between drug effects on experimental and clinical pain. This will help inform thinking on the refinement of human and animal models of pain, ultimately helping the pharmaceutical industry bridge the translational gap in the pain field," says Editor-in-Chief of the British Journal of Pharmacology, Professor Ian McGrath.

More work is needed before this approach is fully ready to use, but the researchers believe this could lead to a more cost effective approach that can help scientists gain valuable information about the ways new drugs are working.


Story Source:

The above story is based on materials provided by Wiley. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bruno Georg Oertel, Jörn Lötsch. Clinical pharmacology of analgesics assessed with human experimental pain models: Bridging basic and clinical research. British Journal of Pharmacology, 2012; DOI: 10.1111/bph.12023

Cite This Page:

Wiley. "Testing pain killers on humans could save money and speed the arrival of new drugs, experts say." ScienceDaily. ScienceDaily, 8 November 2012. <www.sciencedaily.com/releases/2012/11/121108073803.htm>.
Wiley. (2012, November 8). Testing pain killers on humans could save money and speed the arrival of new drugs, experts say. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2012/11/121108073803.htm
Wiley. "Testing pain killers on humans could save money and speed the arrival of new drugs, experts say." ScienceDaily. www.sciencedaily.com/releases/2012/11/121108073803.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) — Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) — According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) — A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins