Featured Research

from universities, journals, and other organizations

New form of brain plasticity: How social isolation disrupts myelin production

Date:
November 11, 2012
Source:
University at Buffalo
Summary:
Animals that are socially isolated for prolonged periods make less myelin in the region of the brain responsible for complex emotional and cognitive behavior, researchers report.

Animals that are socially isolated for prolonged periods make less myelin in the region of the brain responsible for complex emotional and cognitive behavior, researchers at the University at Buffalo and Mt. Sinai School of Medicine report in Nature Neuroscience online.

Related Articles


The research sheds new light on brain plasticity, the brain's ability to adapt to environmental changes. It reveals that neurons aren't the only brain structures that undergo changes in response to an individual's environment and experience, according to one of the paper's lead authors, Karen Dietz, PhD, research scientist in the Department of Pharmacology and Toxicology in the UB School of Medicine and Biomedical Sciences.

Dietz did the work while a postdoctoral researcher at Mt. Sinai School of Medicine; Jia Liu, PhD, a Mt. Sinai postdoctoral researcher, is the other lead author.

The paper notes that changes in the brain's white matter, or myelin, have been seen before in psychiatric disorders, and demyelinating disorders have also had an association with depression. Recently, myelin changes were also seen in very young animals or adolescents responding to environmental changes.

"This research reveals for the first time a role for myelin in adult psychiatric disorders," Dietz says. "It demonstrates that plasticity in the brain is not restricted to neurons, but actively occurs in glial cells, such as the oligodendrocytes, which produce myelin."

Myelin is the crucial fatty material that wraps the axons of neurons and allows them to signal effectively. Normal nerve function is lost in demyelinating disorders, such as MS and the rare, fatal, childhood disease, Krabbe's disease.

This paper reveals that the stress of social isolation disrupts the sequence in which the myelin-making cells, the oligodendrocytes, are formed.

In the experiment, adult mice, normally social animals, were isolated for eight weeks to induce a depressive-like state. They were then introduced to a "novel" mouse, one they hadn't seen before; while mice are normally highly motivated to be social, those who had been socially isolated did not show any interest in interacting with the new mouse, a model of social avoidance and withdrawal.

Brain tissue analysis of the socially isolated animals revealed significantly lower than normal levels of gene transcription for oligodendrocyte cells in the prefrontal cortex, a brain region responsible for emotional and cognitive behavior.

"This research provides the first explanation of the mechanism behind how this brain plasticity occurs," says Dietz, "showing how this change in the level of social interaction of the adult animal resulted in changes in oligodendrocytes."

The key change was that cellular nuclei in the prefrontal cortex contained less heterochromatin, a tightly packed form of DNA material, which is unavailable for gene expression.

"This process of DNA compaction is what signifies that the oligodendrocytes have matured, allowing them to produce normal amounts of myelin," says Dietz. "We have observed in socially isolated animals that there isn't as much compaction, and the oligodendrocytes look more immature. As adults age, normally, you would see more compaction, but when social isolation interferes, there's less compaction and therefore, less myelin being made."

She adds, however, that the research also showed that myelin production went back to normal after a period of social integration, suggesting that environmental intervention was sufficient to reverse the negative consequences of adult social isolation.

The new paper, together with a report published earlier this year by another group showing myelin changes triggered by social isolation early in life will broaden investigations into brain plasticity, says David Dietz, PhD, one of the paper's co-authors, an assistant professor of pharmacology and toxicology at UB.

In addition, adds Karen Dietz, the work has implications for future questions regarding MS and other myelin disorders. "This research suggests that maybe recovery from an MS episode might be enhanced by social interaction," she says. "This opens another avenue of investigation of how mood and myelin disorders may interact with one another." Major funding for the research came from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University at Buffalo. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jia Liu, Karen Dietz, Jacqueline M DeLoyht, Xiomara Pedre, Dipti Kelkar, Jasbir Kaur, Vincent Vialou, Mary Kay Lobo, David M Dietz, Eric J Nestler, Jeffrey Dupree, Patrizia Casaccia. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nature Neuroscience, 2012; DOI: 10.1038/nn.3263

Cite This Page:

University at Buffalo. "New form of brain plasticity: How social isolation disrupts myelin production." ScienceDaily. ScienceDaily, 11 November 2012. <www.sciencedaily.com/releases/2012/11/121111153935.htm>.
University at Buffalo. (2012, November 11). New form of brain plasticity: How social isolation disrupts myelin production. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2012/11/121111153935.htm
University at Buffalo. "New form of brain plasticity: How social isolation disrupts myelin production." ScienceDaily. www.sciencedaily.com/releases/2012/11/121111153935.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins