Featured Research

from universities, journals, and other organizations

Surveying Earth's interior with atomic clocks

Date:
November 12, 2012
Source:
University of Zurich
Summary:
Have you ever thought to use a clock to identify mineral deposits or concealed water resources within the Earth? Some scientists are convinced that ultraprecise portable atomic clocks will make this a reality in the next decade. The scientists argue that these atomic clocks have already reached the necessary degree of precision to be useful for geophysical surveying. They say that such clocks will provide the most direct measurement of the geoid – the Earth’s true physical form. It will also be possible to combine atomic clocks measurements to existent geophysical methods to explore the interior of the Earth. 

An initial high-precision atomic clock prototype, ACES (Atomic Clock Ensemble in Space), is already due to be taken to the Columbus Space Lab at the International Space Station (ISS) by 2014.
Credit: European Space Agency ESA, D. Ducros

Have you ever thought to use a clock to identify mineral deposits or concealed water resources within the Earth? An international team headed by astrophysicists Philippe Jetzer and Ruxandra Bondarescu from the University of Zurich is convinced that ultraprecise portable atomic clocks will make this a reality in the next decade. The scientists argue that these atomic clocks have already reached the necessary degree of precision to be useful for geophysical surveying. They say that such clocks will provide the most direct measurement of the geoid -- Earth's true physical form. It will also be possible to combine atomic clocks measurements to existent geophysical methods to explore the interior of Earth.

Determining geoid from general relativity

Today, the Earth's geoid -- the surface of constant gravitational potential that extends the mean sea level -- can only be determined indirectly. On continents, the geoid can be calculated by tracking the altitude of satellites in orbit. Picking the right surface is a complicated, multivalued problem. The spatial resolution of the geoid computed this way is low -- approximately 100 km.

Using atomic clocks to determine the geoid is an idea based on general relativity that has been discussed for the past 30 years. Clocks located at different distances from a heavy body like our Earth tick at different rates. Similarly, the closer a clock is to a heavy underground structure the slower it ticks -- a clock positioned over an iron ore will tick slower than one that sits above an empty cave. "In 2010 ultraprecise atomic clocks have measured the time difference between two clocks, one positioned 33 centimeters above the other," explains Bondarescu before adding: "Local mapping of the geoid to an equivalent height of 1 centimeter with atomic clocks seems ambitions, but within the reach of atomic clock technology."

Geophysical surveying with atomic clocks

According to Bondarescu, if an atomic clock is placed at sea level, i.e., at the exact altitude of the geoid, a second clock could be positioned anywhere on the continent as long as it is synchronized with the first clock. The connection between the clocks can be made with fiber optics cable or via telecommunication satellite provided that the transmission is reliable enough. The second clock will tick faster or slower, depending on whether it is above of beneath the geoid. The local measurement of the geoid can then be combined with other geophysical measurements such as those from gravimeters, which measure the acceleration of the gravitational field, to get a better idea of the underground structure.

Mappings possible to great depths

In principle, atomic clock surveying is possible to great depth provided that the heavy underground structure to be studied is large enough to affect the tick rates of clocks in a measurable manner. The smallest structure that atomic clocks accurate to 1 centimeter in geoid height can determine is a buried sphere with a radius of about 1.5 kilometer buried at 2 kilometers under the surface provided it has a density contrast of about 20% with the surrounding upper crust. However, scientists estimate that the same clocks would be sensitive to a buried sphere with a radius of 4 kilometers at a depth of about 30 kilometers for the same density contrast.

Currently, ultraprecise atomic clocks only work in labs. In other words, they are not transportable and thus cannot be used for measurements in the field. However, this is all set to change in the next few years: Various companies and research institutes, including the Centre Suisse d'Electronique et de Microtechnique CSEM based in Neuchâtel, are already working on the development of portable ultraprecise atomic clocks. "By 2022 at the earliest, one such ultraprecise portable atomic clock will fly into Space on board an ESA satellite," says Professor Philippe Jetzer, the Swiss delegate for the STE-Quest satellite mission aimed at testing the general relativity theory very precisely.

As early as 2014 or 2015, the "Atomic Clock Ensemble in Space ACES" is to be taken to the International Space Station ISS. ACES is an initial prototype that does not yet have the precision of STE-QUEST.


Story Source:

The above story is based on materials provided by University of Zurich. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ruxandra Bondarescu, Mihai Bondarescu, György Hetényi, Lapo Boschi, Philippe Jetzer, Jayashree Balakrishna. Geophysical applicability of atomic clocks: direct continental geoid mapping. Geophysical Journal International, 2012; 191 (1): 78 DOI: 10.1111/j.1365-246X.2012.05636.x

Cite This Page:

University of Zurich. "Surveying Earth's interior with atomic clocks." ScienceDaily. ScienceDaily, 12 November 2012. <www.sciencedaily.com/releases/2012/11/121112090038.htm>.
University of Zurich. (2012, November 12). Surveying Earth's interior with atomic clocks. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/11/121112090038.htm
University of Zurich. "Surveying Earth's interior with atomic clocks." ScienceDaily. www.sciencedaily.com/releases/2012/11/121112090038.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins