Featured Research

from universities, journals, and other organizations

'Space gems': Rare meteorites created in violent celestial collision

Date:
November 15, 2012
Source:
University of Rochester
Summary:
A tiny fraction of meteorites on Earth contain strikingly beautiful, translucent, olive-green crystals embedded in an iron-nickel matrix. Called pallasites, these "space gems" have fascinated scientists since they were first identified as originating from outer space more than 200 years ago. Now a new study shows that their origins were more dramatic than first thought.

The Esquel meteorite, consisting of iron-nickel and olivine, was discovered in central Argentina.
Credit: Arlene Schlazer

A tiny fraction of meteorites on Earth contain strikingly beautiful, translucent, olive-green crystals embedded in an iron-nickel matrix. Called pallasites, these "space gems" have fascinated scientists since they were first identified as originating from outer space more than 200 years ago.

Now a new study published this week in Science (Nov. 16) shows that their origins were more dramatic than first thought. Using a carbon dioxide laser, a magnetic field, and a sophisticated recording device, a team of geophysicists, led by John Tarduno at the University of Rochester, has shown that the pallasites were likely formed when a smaller asteroid crashed into a planet-like body about 30 times smaller than earth, resulting in a mix of materials that make up the distinctive meteorites.

"The findings by John Tarduno and his team turn the original pallasite formation model on its head," said Joshua Feinberg, assistant professor of earth sciences at the University of Minnesota, who was not involved in the study. "Their analysis of the pallasites has helped to significantly redefine our understanding of how these objects formed during the early history of our solar system."

Pallasites are made of iron-nickel and the translucent, gem-like mineral olivine, leading many scientists to assume they were formed where those two materials typically come together -- at the boundary of the iron core and rocky mantle in an asteroid or other planetary body. Tarduno discovered that tiny metal grains in the olivine were magnetized in a common direction, a revelation that led the researchers to conclude that the pallasites must have been formed much farther from the core.

"We think the iron-nickel in the pallasites came from a collision with an asteroid," said research team member Francis Nimmo, professor of earth and planetary sciences at the University of California Santa Cruz. "Molten iron from the core of the smaller asteroid was injected into the mantle of the larger body, creating the textures we see in the pallasites."

"Previous thinking had been that iron was squeezed up from the core into olivine in the mantle," said Tarduno. "The magnetic grains in the olivine showed that was not the case."

In order for the metal grains -- located in the olivine -- to become magnetized, there had to be a churning, molten iron core to create a magnetic field. And temperatures at the core-mantle boundary -- which would have been close to 930 C -- are simply too hot for magnetization to take place. That means that the pallasites must have formed at relatively shallow depths in the rocky mantle, where it was much cooler.

By using a carbon dioxide laser at the University of Rochester, the scientists were able to heat the metal grains past their individual Curie temperatures -- the point at which a metal loses its magnetization. The grains were then cooled in the presence of a magnetic field in order to become re-magnetized, while a highly sensitive measuring instrument called a SQUID (superconducting quantum interference device) was used to record the values. In that way, the research team was able to calculate the strength of the past magnetic field, and then determine the rate of cooling using prior published work on metal microstructures.

"The larger the parent body was, the longer it would have taken for the samples to cool," said Nimmo. "Our measurements, combined with a computer model we developed, told us that the parent body had a radius of about 200 km -- some 30 times smaller than earth."

The measurements helped the scientists to classify the parent body of the pallasites. Tarduno said a 200 km radius made the body large enough to be considered a protoplanet -- a small celestial object with the potential of developing into planets.

Their work also helped clear up questions about whether small celestial bodies were capable of having dynamo activity -- a rotating, liquid iron core that can create a magnetic field. "Our magnetic data join mounting evidence from meteorites that small bodies can, indeed, have dynamo action," said Tarduno.

The research team also included Rory Cottrell, Julianna Hopkins, Julia Voronov, Austen Erickson, Eric Blackman, and Robert McKinley in Rochester, and Edward Scott at the Hawaii Institute for Geophysics and Planetology.

The work was funded by NASA and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.


Journal Reference:

  1. John A. Tarduno, Rory D. Cottrell, Francis Nimmo, Julianna Hopkins, Julia Voronov, Austen Erickson, Eric Blackman, Edward R.D. Scott, Robert Mckinley. Evidence for a Dynamo in the Main Group Pallasite Parent Body. Science, 2012 DOI: 10.1126/science.1223932

Cite This Page:

University of Rochester. "'Space gems': Rare meteorites created in violent celestial collision." ScienceDaily. ScienceDaily, 15 November 2012. <www.sciencedaily.com/releases/2012/11/121115141546.htm>.
University of Rochester. (2012, November 15). 'Space gems': Rare meteorites created in violent celestial collision. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2012/11/121115141546.htm
University of Rochester. "'Space gems': Rare meteorites created in violent celestial collision." ScienceDaily. www.sciencedaily.com/releases/2012/11/121115141546.htm (accessed April 23, 2014).

Share This



More Space & Time News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Chief Outlines Plan for Human Mission to Mars

NASA Chief Outlines Plan for Human Mission to Mars

AFP (Apr. 22, 2014) NASA administrator Charles Bolden, speaking at the 'Human to Mars Summit' in Washington, says that learning more about the Red Planet can help answer the 'fundamental question' of 'life beyond Earth'. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Nasa Gives You An Excuse to Post a Selfie on Earth Day

Nasa Gives You An Excuse to Post a Selfie on Earth Day

TheStreet (Apr. 22, 2014) NASA is inviting all social media users to take a selfie of themselves alongside nature and to post it to Twitter, Facebook, Flickr, Instagram, or Google Plus with the hashtag #globalselfie. NASA's goal is to crowd-source a collection of snapshots of the earth, ground-up, that will be used to create one "unique mosaic of the Blue Marble." This image will be available to all in May. Since this is probably one of the few times posting a selfie to Twitter won't be embarrassing, we suggest you give it a go for a good cause. Video provided by TheStreet
Powered by NewsLook.com
SpaceX's Dragon Spacecraft Captured by International Space Station

SpaceX's Dragon Spacecraft Captured by International Space Station

Reuters - US Online Video (Apr. 20, 2014) SpaceX's unmanned Dragon spacecraft makes a scheduled Easter Sunday rendezvous with the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Raw: Easter Morning Delivery for Space Station

Raw: Easter Morning Delivery for Space Station

AP (Apr. 20, 2014) Space station astronauts got a special Easter treat: a cargo ship full of supplies. The SpaceX company's cargo ship, Dragon, spent two days chasing the International Space Station following its launch from Cape Canaveral. (April 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins