Featured Research

from universities, journals, and other organizations

Novel studies of gene regulation in brain development may mean new treatment of mental disorders

Date:
November 30, 2012
Source:
University of California, San Diego
Summary:
Researchers have come up with a novel way to describe a time-dependent brain development based on coherent–gene-groups (CGGs) and transcription-factors (TFs) hierarchy. The findings could lead to new drug designs for mental disorders such as autism-spectrum disorders (ASD) and schizophrenia.

A team of researchers at the University of California, San Diego and the Institut Pasteur, Paris has come up with a novel way to describe a time-dependent brain development based on coherent-gene-groups (CGGs) and transcription-factors (TFs) hierarchy. The findings could lead to new drug designs for mental disorders such as autism-spectrum disorders (ASD) and schizophrenia.

Related Articles


In the paper, published November 22 as an online-first publication in the journal Genes, Brain and Behavior, the researchers identified the hierarchical tree of CGG-TF networks that determine the patterns of genes expressed during brain development and found that some "master transcription factors" at the top level of the hierarchy regulated the expression of a significant number of gene groups.

Instead of a taking the approach that a single gene creates a single response, researchers used contemporary methods of data analysis, along with the Gordon supercomputer at the university's San Diego Supercomputer Center (SDSC), to identify CGGs responsible for brain development which can be affected for treatment of mental disorders. The team found that these groups of genes act in concert to send signals at various levels of the hierarchy to other groups of genes, which control the general and more specific (depending of the level) events in brain structure development.

"We have proposed a novel, though still hypothetical, strategy of drug design based on this hierarchical network of TFs that could pave the way for a new category of pharmacological agents that could be used to block a pathway at a critical time during brain development as an effective way to treat and even prevent mental disorders such as ASD and schizophrenia," said lead author Igor Tsigelny, a research scientist with SDSC, as well as the university's Moores Cancer Center and Department of Neurosciences. "On a broader scale, these findings have the potential to change the paradigm of drug design."

Using samples taken from three different regions of the brains of rats, the researchers used Gordon and SDSC's BiologicalNetworks server to conduct numerous levels of analysis, starting with processing of microarray data and SOM (self-organizing maps) clustering, before determining which gene zones were associated with significant developmental changes and brain disorders.

Researchers then conducted analyses of stages of development and quick comparisons between rat and human brain development, in addition to pathway analyses and functional and hierarchical network analyses. The team then analyzed specific gene-TF interactions, with a focus on neurological disorders, before investigating further directions for drug design based on analysis of the hierarchical networks.

Tsigelny's collaborators included Valentina L. Kouzentsova (SDSC and Moores), Michael Baitaluk (SDSC); and Jean-Pierre Changeux, with the Institut Pasteur, in Paris, France. Changeux also is a Skaggs distinguished visiting professor in pharmacology at UC San Diego (2008) and a member of the foreign faculty at UC San Diego's Kavli Institute for Brain and Mind. In addition to SDSC and its computational resources, support for the research paper, called A Hierarchical Coherent-Gene-Group Model for Brain Development, was provided by National Institutes of Health grant # GM084881 for Baitaluk.


Story Source:

The above story is based on materials provided by University of California, San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. Igor F. Tsigelny, Valentina L. Kouznetsova, Michael Baitaluk, Jean-Pierre Changeux. A hierarchical coherent-gene-group model for brain development. Genes, Brain and Behavior, 2012; DOI: 10.1111/gbb.12005

Cite This Page:

University of California, San Diego. "Novel studies of gene regulation in brain development may mean new treatment of mental disorders." ScienceDaily. ScienceDaily, 30 November 2012. <www.sciencedaily.com/releases/2012/11/121130151612.htm>.
University of California, San Diego. (2012, November 30). Novel studies of gene regulation in brain development may mean new treatment of mental disorders. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/11/121130151612.htm
University of California, San Diego. "Novel studies of gene regulation in brain development may mean new treatment of mental disorders." ScienceDaily. www.sciencedaily.com/releases/2012/11/121130151612.htm (accessed October 30, 2014).

Share This



More Mind & Brain News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Studying Effects of Music on Dementia Patients

Studying Effects of Music on Dementia Patients

AP (Oct. 30, 2014) The University of Wisconsin-Milwaukee is studying the popular Music and Memory program to see if music, which helps improve the mood of Alzheimer's patients, can also reduce the use of prescription drugs for those suffering from dementia. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Techy Tots Are Forefront of London's Baby Show

Techy Tots Are Forefront of London's Baby Show

AP (Oct. 28, 2014) Moms and Dads get a more hands-on approach to parenting with tech-centric products for raising their little ones. (Oct. 28) Video provided by AP
Powered by NewsLook.com
Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Newsy (Oct. 27, 2014) Researchers have come up with another reason why dark chocolate is good for your health. A substance in the treat can reportedly help with memory. Video provided by Newsy
Powered by NewsLook.com
Five-Year-Olds Learn Coding as Britain Eyes Digital Future

Five-Year-Olds Learn Coding as Britain Eyes Digital Future

AFP (Oct. 27, 2014) Coding has become compulsory for children as young as five in schools across the UK. Making it the first major world economy to overhaul its IT teaching and put programming at its core. Duration: 02:19 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins