Featured Research

from universities, journals, and other organizations

Plant organ development breakthrough

Date:
December 3, 2012
Source:
Carnegie Institution
Summary:
Plants grow upward from a tip of undifferentiated tissue called the shoot apical meristem -- some cells eventually differentiating into leaves and flowers. Because each plant's form and shape is determined by organ formation and organ boundary creation, elucidating the underlying mechanisms that govern these functions could help scientists design the architecture of crop plants to better capture light and ultimately produce more crop yield with less input.

Arabidopsis.
Credit: Courtesy of the US Department of Agriculture

Plants grow upward from a tip of undifferentiated tissue called the shoot apical meristem. As the tip extends, stem cells at the center of the meristem divide and increase in numbers. But the cells on the periphery differentiate to form plant organs, such as leaves and flowers. In between these two layers, a group of boundary cells go into a quiescent state and form a barrier that not only separates stem cells from differentiating cells, but eventually forms the borders that separate the plant's organs.

Related Articles


Because each plant's form and shape is determined by organ formation and organ boundary creation, elucidating the underlying mechanisms that govern these functions could help scientists design the architecture of crop plants to better capture light and ultimately produce more crop yield with less input. New research from two teams led by Carnegie's Zhiyong Wang and Kathryn Barton focuses on the role of the crucial plant hormone brassinosteroid in the creation of plant-shoot architecture.

Their work is published by Proceedings of the National Academy of Sciences during the week of December 3.

Like all organisms, plant growth and development is regulated by internally produced chemical signals, including hormones like brassinosteroid, which is found throughout the plant kingdom. The brassinosteroid signaling pathway is involved in regulating more than 1,000 plant genes. Mutant plants that are deficient in brassinosteroid that are grown in the dark show features of plants grown in the light. They also have defects at many phases of the plant life cycle, including reduced seed germination, dwarfism, and sterility.

The new study lead by Wang and Barton uncovered yet another role of brassinosteroid: the formation of boundaries between organs. Plants made hypersensitive to brassinosteroid displayed fused organs. The team included lead author's Carnegie's Joshua Gendron and Jiang-Shu Liu, as well as Min Fan, Mingyi Bai, and Stephan Wenkel, from Carnegie, and Patricia Springer from the University of California Riverside. Their investigations showed that activation of the brassinosteroid pathway represses a group of genes called the cup-shaped cotyledon, or CUC family, which is responsible for organ boundary formation. Using sophisticated techniques the team demonstrated that the protein in the brassinosteroid pathway that is responsible for binding to DNA and, in this case, for inhibiting CUC genes, is present at high levels in the meristem's undifferentiated stem cells and developing organ primordia, but very low in the boundary cells, suggesting that different levels of brassinosteroid activity contribute to the opposite growth behavior of these three types of cells.

"This work links the plant steroids to growth and development, organ boundary development, providing a link between the physiology of the plant and its architectural design," Wang and Barton said.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. M. Gendron, J.-S. Liu, M. Fan, M.-Y. Bai, S. Wenkel, P. S. Springer, M. K. Barton, Z.-Y. Wang. Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1210799110

Cite This Page:

Carnegie Institution. "Plant organ development breakthrough." ScienceDaily. ScienceDaily, 3 December 2012. <www.sciencedaily.com/releases/2012/12/121203163530.htm>.
Carnegie Institution. (2012, December 3). Plant organ development breakthrough. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2012/12/121203163530.htm
Carnegie Institution. "Plant organ development breakthrough." ScienceDaily. www.sciencedaily.com/releases/2012/12/121203163530.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins