Featured Research

from universities, journals, and other organizations

Dance of quantum tornadoes: Quantum fluid trapped on top of semiconductor chip

Date:
December 4, 2012
Source:
University of Cambridge
Summary:
Tornado-like vortexes can be produced in bizarre fluids which are controlled by quantum mechanics, completely unlike normal liquids. New research demonstrates how massed ranks of these quantum twisters line up in rows, and paves the way for engineering quantum circuits and chips measuring motion ultra-precisely.

Polariton quantum rivers flow from four hills creating quantum tornadoes in the valley.
Credit: Natasha Berloff from DAMTP

A quantum fluid trapped on top of a semiconductor chip can be used to measure movements to astonishing precision.

Tornado-like vortexes can be produced in bizarre fluids which are controlled by quantum mechanics, completely unlike normal liquids. New research published December 4 in the journal Nature Communications demonstrates how massed ranks of these quantum twisters line up in rows, and paves the way for engineering quantum circuits and chips measuring motion ultra-precisely.

The destructive power of rampaging tornadoes defeats the human ability to control them. A Cambridge team has managed to create and control hundreds of tiny twisters on a semiconductor chip. By controlling where electrons move and how they interact with light the team created a marriage of electrons and photons that form a new quantum particle called a 'polariton'.

The results come from a collaboration between the experimental team in the NanoPhotonics Centre led by Professor Jeremy Baumberg and the theoretical quantum fluids group of Dr Natalia Berloff.

Dr Berloff says: "Being half-light and half-matter these particles are feather-light and move quickly around, sloshing and cascading much like water in a mountain river."

Most excitingly, the team says, these quantum systems are actually large, the width of a human hair, and the effects can be seen though a normal optical microscope.

Using ultra-high quality samples produced by a team from Crete the researchers exerted unprecedented control on possible flows they can arouse within this liquid: forcing it to flow down a hill, over a mountainous terrain, forming quiet lakes and wildly raging quantum oceans.

By creating polaritons at the top of several hills and letting them flow downhill the group was able to form regular arrays of hundreds of tornadoes spiralling in alternating directions along well-defined canyons. By changing the number of hills, the distance between them and the rate of polariton creation the researchers could vary the separation, the size, and number of the twister cores, achieving a long held dream of creating and controlling macroscopic quantum states.

But quantum mechanics responsible for creating such fluids makes quantum tornadoes act even more intriguingly than their classical counterparts. Quantum vortices can only swirl around in fixed 'quantised' amounts and the liquids at the top of the various hills synchronize as soon as they mix down in the valleys -- just two examples of quantum mechanics that can now be seen directly.

Quantum tornadoes can be reconfigured on the fly and pave the way to widespread applications in the control of quantum fluid circuits. Creating arbitrary configurations of polariton liquids leads to even more complicated quantum superpositions and lays groundwork for polariton interferometers (devices which measure small movements and surface irregularities) that respond extremely sensitively to even the slightest changes in the environment.

The research was funded by the Engineering and Physical Sciences Research Council and the EU.


Story Source:

The above story is based on materials provided by University of Cambridge. The original story is licensed under a Creative Commons license. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Tosi, G. Christmann, N.G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P.G. Savvidis, J.J. Baumberg. Geometrically locked vortex lattices in semiconductor quantum fluids. Nature Communications, 2012; 3: 1243 DOI: 10.1038/ncomms2255

Cite This Page:

University of Cambridge. "Dance of quantum tornadoes: Quantum fluid trapped on top of semiconductor chip." ScienceDaily. ScienceDaily, 4 December 2012. <www.sciencedaily.com/releases/2012/12/121204112221.htm>.
University of Cambridge. (2012, December 4). Dance of quantum tornadoes: Quantum fluid trapped on top of semiconductor chip. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2012/12/121204112221.htm
University of Cambridge. "Dance of quantum tornadoes: Quantum fluid trapped on top of semiconductor chip." ScienceDaily. www.sciencedaily.com/releases/2012/12/121204112221.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins