Featured Research

from universities, journals, and other organizations

Oceanography student uses crashing waves on shorelines to study Earth's interior

Date:
December 5, 2012
Source:
University of Rhode Island
Summary:
Scientists have long used the speed of seismic waves traveling through the Earth as a means of learning about the geologic structure beneath the Earth's surface, but the seismic waves they use have typically been generated by earthquakes or human-made explosions. A graduate student is using the tiny seismic waves created by ocean waves crashing on shorelines around the world to learn how an underwater plateau was formed 122 million years ago.

Scientists have long used the speed of seismic waves traveling through Earth as a means of learning about the geologic structure beneath Earth's surface, but the seismic waves they use have typically been generated by earthquakes or human-made explosions. A University of Rhode Island graduate student is using the tiny seismic waves created by ocean waves crashing on shorelines around the world to learn how an underwater plateau was formed 122 million years ago.

"There are any number of ways to create seismic waves, but most people only think about earthquakes and explosions," said Brian Covellone, a doctoral student at the URI Graduate School of Oceanography. "Using data from ocean waves allows you to sample a different region of the Earth's interior than you can from using earthquake data. And by combining multiple data sets, you can get a clearer picture of the geology of the Earth."

Covellone, a native of Warwick, R.I., is investigating the origin of the Ontong Java plateau, an underwater feature north of New Guinea and the Solomon Islands, which formed when a massive volume of magma erupted from the seafloor over a short period of time. Scientists disagree about whether the eruption happened as the result of a plume of magma breaking through the seafloor, in the way that Hawaii was formed, or at a mid-ocean ridge where Earth's crust was spreading apart and new crust was forming.

According to Covellone, the velocity of seismic waves depends on the temperature and the composition of the material through which it travels. By studying how quickly seismic waves travel near the Ontong Java plateau, scientists can infer how the structure was formed. By analyzing data from hundreds of seismometers around the Pacific Ocean, especially those between Hawaii and Australia, Covellone believes that coastal waves will help provide the answer.

"Earthquake data stands out compared to the background noise of waves crashing on the shoreline," he said. "But that noise has valuable information in it. If you take that noise and sum it up over months or years, they grow in amplitude and you can pull out valuable data from it.

"Waves on a beach excite the Earth in a non-random way, and when I stack all that data together, I get a seismogram that looks like an earthquake, with a large spike in it," he said.

Covellone will present a summary of his research December 5 at a meeting of the American Geophysical Union.

"By the time I graduate, I expect to have a high-resolution image of the velocity structure underneath the Ontong Java plateau," said Covellone. "And from that we'll have an idea of what caused the plateau to form. It will shed a lot of light on the subject, but it's still just one piece of a big puzzle."


Story Source:

The above story is based on materials provided by University of Rhode Island. Note: Materials may be edited for content and length.


Cite This Page:

University of Rhode Island. "Oceanography student uses crashing waves on shorelines to study Earth's interior." ScienceDaily. ScienceDaily, 5 December 2012. <www.sciencedaily.com/releases/2012/12/121205091042.htm>.
University of Rhode Island. (2012, December 5). Oceanography student uses crashing waves on shorelines to study Earth's interior. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2012/12/121205091042.htm
University of Rhode Island. "Oceanography student uses crashing waves on shorelines to study Earth's interior." ScienceDaily. www.sciencedaily.com/releases/2012/12/121205091042.htm (accessed August 1, 2014).

Share This




More Earth & Climate News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins