Featured Research

from universities, journals, and other organizations

Research on blood vessel proteins holds promise for controlling 'blood-brain barrier'

Date:
December 6, 2012
Source:
Johns Hopkins Medicine
Summary:
Working with mice, researchers have shed light on the activity of a protein pair found in cells that form the walls of blood vessels in the brain and retina, experiments that could lead to therapeutic control of the blood-brain barrier and of blood vessel growth in the eye.

Blood vessels near the center of a healthy mouse retina. Arteries in green; veins in red.
Credit: Yanshu Wang

Working with mice, Johns Hopkins researchers have shed light on the activity of a protein pair found in cells that form the walls of blood vessels in the brain and retina, experiments that could lead to therapeutic control of the blood-brain barrier and of blood vessel growth in the eye.

Related Articles


Their work reveals a dual role for the protein pair, called Norrin/Frizzled-4, in managing the blood vessel network that serves the brain and retina. The first job of the protein pair's signaling is to form the network's proper 3-D architecture in the retina during fetal development. The second job, after birth, is to continue signaling to maintain the blood-brain barrier, which gives the brain an extra layer of protection against infection transmitted through the circulatory system.

The Hopkins researchers say results of the study, published online in Cell on Dec. 7, could have treatment implications for disorders of the retinal blood vessels caused by diabetes, and age-related loss of central vision. They also could help clinicians develop a way to temporarily increase the penetrability of the blood-brain barrier, allowing critical drugs to pass through to the brain, says Jeremy Nathans, M.D., Ph.D., a Howard Hughes researcher and professor of molecular biology and genetics at the Institute for Basic Biomedical Sciences at the Johns Hopkins School of Medicine.

Scientists already knew that Frizzled-4 is a protein located on the surface of the cells that create blood vessel walls throughout the body. Genetic mutations that cause Frizzled-4's absence in mice and humans create severe defects in blood vessel development, but only in the retina, the light-absorbing sheet of cells at the back of the eye. Retinal tissue consumes the most oxygen per gram than any other tissue in the body. Therefore, three networked layers of blood vessels are required to fulfill its oxygen needs. So blood vessel defects in the retina generally starve it of oxygen, causing blindness.

In an effort to understand how Frizzled-4 and its activator Norrin work normally, Nathans' team deleted Norrin in mice. As a result, the rodents' retinal arteries and veins became confused and crisscrossed. Alternatively, if they turned Norrin on earlier than usual, the networks began to develop earlier. And in mice missing either Norrin or Frizzled-4, retinal blood vessels grew radially, but they grew slowly and failed to create the second and third networked layers. All of these results suggest that Norrin and Frizzled-4 play an important role in the proper timing and arrangement of the retinal blood vessel network, Nathans says.

The team also found that mice missing just Frizzled-4, besides having major structural defects in their retinal blood vessels, showed signs of a leaky blood-brain barrier and, similarly, a leaky blood-retina barrier. To get at the cause of this, the team used special genetic tricks to control the activity of Frizzled-4 in a time- and cell-specific manner, creating mice that were missing Frizzled-4 in only about one out of every 20 endothelial cells. What they found is that only the cells missing Frizzled-4 were leaky and, surprisingly, the general architecture of the networks was fine.

Nathans explains that, normally, these blood vessel endothelial cells contain permeable "windows" and relatively loose "bolts" connecting the cells together. When in the brain and retina, they have no "windows" and their "bolts" connect them tightly. Nathans adds, "We now know that endothelial cells that make up the blood-brain barrier have to receive signals constantly from nearby brain or retinal cells telling them, 'You're in the brain. Tighten your bolts and close your windows.'"

The "windows" in the other endothelial cells in the body are protein portals that allow large molecules to pass through easily -- to be filtered by the kidneys, for example. The central nervous system, including the retina, is a privileged area. If toxins were to pass through an endothelial "window" into the brain, the resulting damage could be detrimental to the brain's activity. So the body seals off these areas from bloodborne pathogens by tightening the "bolts" between and closing the "windows" of the endothelial cells that form the blood vessels servicing those areas. This reinforcement of the endothelial cells is what is known as the blood-brain barrier.

Although crucial to protecting the central nervous system, the blood-brain barrier also prevents drugs in the bloodstream from getting inside the brain to treat diseases, such as cancer. "Our research shows that blood vessel cells lacking Frizzled-4 are leaky. With this information in hand, we hope that someday it may be possible to temporarily loosen the blood-brain barrier, allowing life-saving drugs to pass through," says Nathans.

Other authors on the paper are Yanshu Wang, Amir Rattner, Yulian Zhou, John Williams and Philip Smallwood, all from the Johns Hopkins University School of Medicine.

This work was supported by grants from the National Eye Institute, the Howard Hughes Medical Institute, the Johns Hopkins Brain Science Institute, the Foundation Fighting Blindness, and the Ellison Medical Foundation.

On the Web:

Link to article (live after embargo lifts): http://dx.doi.org/10.1016/j.cell.2012.10.042

Nathans Lab: http://neuroscience.jhu.edu/JeremyNathans.php


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yanshu Wang, Amir Rattner, Yulian Zhou, John Williams, PhilipM. Smallwood, Jeremy Nathans. Norrin/Frizzled4 Signaling in Retinal Vascular Development and Blood Brain Barrier Plasticity. Cell, 2012; 151 (6): 1332 DOI: 10.1016/j.cell.2012.10.042

Cite This Page:

Johns Hopkins Medicine. "Research on blood vessel proteins holds promise for controlling 'blood-brain barrier'." ScienceDaily. ScienceDaily, 6 December 2012. <www.sciencedaily.com/releases/2012/12/121206121726.htm>.
Johns Hopkins Medicine. (2012, December 6). Research on blood vessel proteins holds promise for controlling 'blood-brain barrier'. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/12/121206121726.htm
Johns Hopkins Medicine. "Research on blood vessel proteins holds promise for controlling 'blood-brain barrier'." ScienceDaily. www.sciencedaily.com/releases/2012/12/121206121726.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Fauci Says Ebola Risk in US "essentially Zero"

Fauci Says Ebola Risk in US "essentially Zero"

AP (Oct. 30, 2014) NIAID Director Anthony Fauci said the risk of Ebola becoming an epidemic in the U.S. is essentially zero Thursday at the Washington Ideas Forum. He also said an Ebola vaccine will be tested in West Africa in the next few months. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Nurse Defies Ebola Quarantine With Bike Ride

Nurse Defies Ebola Quarantine With Bike Ride

AP (Oct. 30, 2014) A nurse who vowed to defy Maine's voluntary quarantine for health care workers who treated Ebola patients followed through on her promise Thursday, leaving her home for an hour-long bike ride. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Pot-Infused Edibles Raise Concerns in Colorado

Pot-Infused Edibles Raise Concerns in Colorado

AFP (Oct. 30, 2014) Colorado may have legalized marijuana for recreational use, but the debate around the decision still continues, with a recent - failed - attempt to ban cannabis-infused edibles. Duration: 01:53 Video provided by AFP
Powered by NewsLook.com
British Navy Ship Arrives in Sierra Leone With Ebola Aid

British Navy Ship Arrives in Sierra Leone With Ebola Aid

AFP (Oct. 30, 2014) The British ship RFA ARGUS arrived in Sierra Leone to deliver supplies and equipment to help the fight against Ebola. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins