Featured Research

from universities, journals, and other organizations

Protein linking exercise to bigger, stronger muscles discovered; Finding might lead to new therapies for muscle-wasting diseases

Date:
December 6, 2012
Source:
Dana-Farber Cancer Institute
Summary:
Scientists have isolated a previously unknown protein in muscles that spurs their growth and increased power following resistance exercise. They suggest that artificially raising the protein's levels might someday help prevent muscle loss caused by cancer, prolonged inactivity in hospital patients, and aging.

Scientists at Dana-Farber Cancer Institute have isolated a previously unknown protein in muscles that spurs their growth and increased power following resistance exercise.
Credit: © Mircea Netea / Fotolia

Scientists at Dana-Farber Cancer Institute have isolated a previously unknown protein in muscles that spurs their growth and increased power following resistance exercise. They suggest that artificially raising the protein's levels might someday help prevent muscle loss caused by cancer, prolonged inactivity in hospital patients, and aging.

Mice given extra doses of the protein gained muscle mass and strength, and rodents with cancer were much less affected by cachexia, the loss of muscle that often occurs in cancer patients, according to the report in the Dec. 7 issue of the journal Cell.

"This is basic science at present," commented Jorge Ruas, PhD, first author of the report. "But if you could find a way to elevate levels of this protein, that would be very exciting. For example, you might be able to reduce muscle wasting in patients in intensive care units whose muscles atrophy because of prolonged bed rest." Other applications, he said, might be in disorders such as muscular dystrophy and the gradual loss of muscle mass from aging.

Bruce Spiegelman, PhD, the senior author, led the Dana-Farber team that identified the protein, PGC-1 alpha-4, in skeletal muscle and said it is present in mice and humans. Resistance exercise, such as weight lifting, causes a rise in PGC-1 alpha-4, which in turn triggers biochemical changes that make muscles larger and more powerful, said the researchers.

The protein is an isoform, or slight variant, of PGC-1 alpha, an important regulatory of body metabolism that is turned on by forms of exercise, such as running, that increase muscular endurance rather than size. "It's pretty amazing that two proteins made by a single gene regulate the effects of both types of exercise," commented Spiegelman.

The researchers found that the new protein controls the activity of two previously known molecular pathways involved in muscle growth. A rise in PGC-1 alpha-4 with exercise increases activity of a protein called IGF1 (insulin-like growth factor 1), which facilitates muscle growth. At the same time, PGC-1 alpha-4 also represses another protein, myostatin, which normally restricts muscle growth. In effect, PGC-1 alpha-4 presses the accelerator and removes the brake to enable exercised muscles to gain mass and strength.

"All of our muscles have both positive and negative influences on growth," Spiegelman explained. "This protein (PGC-1 alpha-4) turns down myostatin and turns up IGF1."

Several experiments demonstrated the muscle-enhancing effects of the novel protein. The investigators used virus carriers to insert PGC-1 alpha-4 into the leg muscle of mice and found that within several days their muscle fibers were 60 percent bigger compared to untreated mice. They also engineered mice to have more PGC-1 alpha-4 in their muscles than normal mice who were not exercising. Tests showed that the treated mice were 20 percent stronger and more resistant to fatigue than the controls; in addition, they were leaner than their normal counterparts.

Mice engineered to have extra PGC-1 alpha-4 showed "dramatic resistance" to cancer-related muscle wasting, the scientists found. The mice lost only 10 percent mass in a leg muscle compared to a 29 percent loss in mice with cancer that did not have additional PGC-1 alpha-4, according to the report. The altered mice were also stronger and more active than the normal mice.

Ruas, the first author, is now in the faculty at the Karolinska Institute in Sweden. Other authors are from Dana-Farber Cancer Institute, Harvard Medical School, the University of Colorado, the University of Virginia, and the Mayo Clinic.

The research was supported by NIH grant DK061562 and a grant from Novartis.


Story Source:

The above story is based on materials provided by Dana-Farber Cancer Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jorge L. Ruas, James P. White, Rajesh R. Rao, Sandra Kleiner, Kevin T. Brannan, Brooke C. Harrison, Nicholas P. Greene, Jun Wu, Jennifer L. Estall, Brian A. Irving, Ian R. Lanza, Kyle A. Rasbach, Mitsuharu Okutsu, K. Sreekumaran Nair, Zhen Yan, Leslie A. Leinwand, Bruce M. Spiegelman. A PGC-1α Isoform Induced by Resistance Training Regulates Skeletal Muscle Hypertrophy. Cell, 2012; 151 (6): 1319 DOI: 10.1016/j.cell.2012.10.050

Cite This Page:

Dana-Farber Cancer Institute. "Protein linking exercise to bigger, stronger muscles discovered; Finding might lead to new therapies for muscle-wasting diseases." ScienceDaily. ScienceDaily, 6 December 2012. <www.sciencedaily.com/releases/2012/12/121206121728.htm>.
Dana-Farber Cancer Institute. (2012, December 6). Protein linking exercise to bigger, stronger muscles discovered; Finding might lead to new therapies for muscle-wasting diseases. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2012/12/121206121728.htm
Dana-Farber Cancer Institute. "Protein linking exercise to bigger, stronger muscles discovered; Finding might lead to new therapies for muscle-wasting diseases." ScienceDaily. www.sciencedaily.com/releases/2012/12/121206121728.htm (accessed September 19, 2014).

Share This



More Plants & Animals News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) — Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Chimp Violence Study Renews Debate On Why They Kill

Chimp Violence Study Renews Debate On Why They Kill

Newsy (Sep. 17, 2014) — The study weighs in on a debate over whether chimps are naturally violent or become that way due to human interference in the environment. Video provided by Newsy
Powered by NewsLook.com
Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) — The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) — Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins