Featured Research

from universities, journals, and other organizations

Fermi improves its vision for thunderstorm Gamma-ray flashes

Date:
December 6, 2012
Source:
NASA/Goddard Space Flight Center
Summary:
Thanks to improved data analysis techniques and a new operating mode, the Gamma-ray Burst Monitor aboard NASA's Fermi Gamma-ray Space Telescope is now 10 times better at catching the brief outbursts of high-energy light mysteriously produced above thunderstorms.

Lightning in the clouds is directly linked to events that produce some of the highest-energy light naturally made on Earth: terrestrial gamma-ray flashes (TGFs). An instrument aboard NASA's Fermi Gamma-ray Space Telescope was recently fine-tuned to better catch TGFs, which allowed scientists to discover that TGFs emit radio waves, too.
Credit: NASA/Goddard Space Flight Center

Thanks to improved data analysis techniques and a new operating mode, the Gamma-ray Burst Monitor (GBM) aboard NASA's Fermi Gamma-ray Space Telescope is now 10 times better at catching the brief outbursts of high-energy light mysteriously produced above thunderstorms.

The outbursts, known as terrestrial gamma-ray flashes (TGFs), last only a few thousandths of a second, but their gamma rays rank among the highest-energy light that naturally occurs on Earth. The enhanced GBM discovery rate helped scientists show most TGFs also generate a strong burst of radio waves, a finding that will change how scientists study this poorly understood phenomenon.

Before being upgraded, the GBM could capture only TGFs that were bright enough to trigger the instrument's on-board system, which meant many weaker events were missed.

"In mid-2010, we began testing a mode where the GBM directly downloads full-resolution gamma-ray data even when there is no on-board trigger, and this allowed us to locate many faint TGFs we had been missing," said lead researcher Valerie Connaughton, a member of the GBM team at the University of Alabama in Huntsville (UAH). She presented the findings Wednesday in an invited talk at the American Geophysical Union meeting in San Francisco. A paper detailing the results is accepted for publication in the Journal of Geophysical Research: Space Physics.

The results were so spectacular that on Nov. 26 the team uploaded new flight software to operate the GBM in this mode continuously, rather than in selected parts of Fermi's orbit.

Connaughton's team gathered GBM data for 601 TGFs from August 2008 to August 2011, with most of the events, 409 in all, discovered through the new techniques. The scientists then compared the gamma-ray data to radio emissions over the same period.

Lightning emits a broad range of very low frequency (VLF) radio waves, often heard as pop-and-crackle static when listening to AM radio. The World Wide Lightning Location Network (WWLLN), a research collaboration operated by the University of Washington in Seattle, routinely detects these radio signals and uses them to pinpoint the location of lightning discharges anywhere on the globe to within about 12 miles (20 km).

Scientists have known for a long time TGFs were linked to strong VLF bursts, but they interpreted these signals as originating from lightning strokes somehow associated with the gamma-ray emission.

"Instead, we've found when a strong radio burst occurs almost simultaneously with a TGF, the radio emission is coming from the TGF itself," said co-author Michael Briggs, a member of the GBM team.

The researchers identified much weaker radio bursts that occur up to several thousandths of a second before or after a TGF. They interpret these signals as intracloud lightning strokes related to, but not created by, the gamma-ray flash.

Scientists suspect TGFs arise from the strong electric fields near the tops of thunderstorms. Under certain conditions, the field becomes strong enough that it drives a high-speed upward avalanche of electrons, which give off gamma rays when they are deflected by air molecules.

"What's new here is that the same electron avalanche likely responsible for the gamma-ray emission also produces the VLF radio bursts, and this gives us a new window into understanding this phenomenon," said Joseph Dwyer, a physics professor at the Florida Institute of Technology in Melbourne, Fla., and a member of the study team.

Because the WWLLN radio positions are far more precise than those based on Fermi's orbit, scientists will develop a much clearer picture of where TGFs occur and perhaps which types of thunderstorms tend to produce them.

The GBM scientists predict the new operating mode and analysis techniques will allow them to catch about 850 TGFs each year. While this is a great improvement, it remains a small fraction of the roughly 1,100 TGFs that fire up each day somewhere on Earth, according to the team's latest estimates.

Likewise, TGFs detectable by the GBM represent just a small fraction of intracloud lightning, with about 2,000 cloud-to-cloud lightning strokes for every TGF.

The Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership and is managed by NASA's Goddard Space Flight Center in Greenbelt, Md. Fermi was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

The GBM Instrument Operations Center is located at the National Space Science Technology Center in Huntsville, Ala. The GBM team includes a collaboration of scientists from UAH, NASA's Marshall Space Flight Center in Huntsville, the Max Planck Institute for Extraterrestrial Physics in Germany and other institutions.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "Fermi improves its vision for thunderstorm Gamma-ray flashes." ScienceDaily. ScienceDaily, 6 December 2012. <www.sciencedaily.com/releases/2012/12/121206122402.htm>.
NASA/Goddard Space Flight Center. (2012, December 6). Fermi improves its vision for thunderstorm Gamma-ray flashes. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/12/121206122402.htm
NASA/Goddard Space Flight Center. "Fermi improves its vision for thunderstorm Gamma-ray flashes." ScienceDaily. www.sciencedaily.com/releases/2012/12/121206122402.htm (accessed April 18, 2014).

Share This



More Space & Time News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Baby Moon 'Peggy' Spotted In Saturn's Rings

New Baby Moon 'Peggy' Spotted In Saturn's Rings

Newsy (Apr. 15, 2014) A bump in the rings could be a half-mile-wide miniature moon. It was found by accident in Cassini probe images. Video provided by Newsy
Powered by NewsLook.com
Americas Glimpse Total Lunar Eclipse

Americas Glimpse Total Lunar Eclipse

AFP (Apr. 15, 2014) A total lunar eclipse, the first since December 2011, took place early Tuesday morning with the Americas getting the best glimpse. Duration: 1:19 Video provided by AFP
Powered by NewsLook.com
NASA Showcases Lunar Eclipse

NASA Showcases Lunar Eclipse

AP (Apr. 15, 2014) Star gazers in parts of North and South America got a rare treat early Tuesday morning - a total eclipse of the moon. (April 15) Video provided by AP
Powered by NewsLook.com
Spacecrafts Could Use Urine As Fuel Source

Spacecrafts Could Use Urine As Fuel Source

Newsy (Apr. 15, 2014) New research says the urea from urine could be recycled for fuel. Urea is filtered out of wastewater when making drinking water. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins