Featured Research

from universities, journals, and other organizations

Airborne scientists search distant stars for complex organic molecules

Date:
December 10, 2012
Source:
Rensselaer Polytechnic Institute (RPI)
Summary:
A team of astrobiology researchers – including two from Rensselaer Polytechnic Institute – will use a series of nighttime flights on an airborne observatory to search newly born stars for the presence of precursors to life.

This graphical representation from the SOFIA Science Center compares two infrared images of the heart of the Orion nebula captured by the FORCAST camera on the SOFIA airborne observatory's telescope with a wider image of the same area from the Spitzer space telescope.
Credit: SOFIA image — James De Buizer / NASA / DLR / USRA / DSI / FORCAST; Spitzer image — NASA/JPL

A team of astrobiology researchers -- including two from Rensselaer Polytechnic Institute -- will use a series of nighttime flights on an airborne observatory to search newly born stars for the presence of precursors to life.

The scientists, led by Douglas Whittet, director of the New York Center for Astrobiology at Rensselaer, will use the observatory's infrared absorption spectroscopy capabilities to search for a suite of molecules in clouds of dust surrounding five young stars. Their work is part of the first season, or cycle, of research to be performed aboard the Statospheric Observatory for Infrared Astronomy (SOFIA), the largest airborne observatory in the world.

A partnership of NASA and the German Aerospace Center, SOFIA consists of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters (100 inches). The airborne observatory, based at NASA's Dryden Aircraft Operations Facility in California, began a planned-20 year lifetime with its first cycle from November 2012 to December 2013.

"We're interested in how the matter that you need to make planetary life came to be: Where did it come from and how was it formed? And since it happened here in our solar system, is it likely to happen elsewhere as well?" said Whittet, also a professor of physics. "We can't go back in time to observe our solar system when it was born, but we can look at other regions that we believe are similar and use them as analogs for the early solar system."

The scientists will determine the chemical composition of distant regions through absorption spectrometry, a technique that takes advantage of the fact that different types of matter absorb different segments of the wavelength spectrum generated by a given source of energy -- in this case, the newly born star.

Whittet explained that the infrared spectra of newly born stars are rich in absorption features that signal the presence of organic molecules and water in the dusty remnants of the clouds from which they formed. These dusty remnants are the raw materials from which new planets may coalesce.

Aboard SOFIA, the scientists will be looking at the absorption spectrum of infrared light at wavelengths between 5 and 8 microns. The researchers will search for molecules such as methane, ammonia, formaldehyde, methanol, and formic acid -- early precursors of amino acids. The work is a collaboration between Whittet and Charles Poteet, a post-doctoral research associate at Rensselaer, and researchers at SETI, the California Institute of Technology, Ithaca College, the NASA Ames Research Center, and Johns Hopkins University.

The current project builds upon recent work in which the scientists combined years of existing research to locate areas in outer space that have extreme potential for complex organic molecule formation. Whittet and his collaborators searched for indications of methanol, a key ingredient in the synthesis of organic molecules that could lead to life, and identified a handful of newly formed stars that are surrounded by clouds with a high concentration of methanol (about 30 percent).

For that project, the scientists were able to rely on observations made from ground-based telescopes, but Whittet said only SOFIA has the capability to gather the more specific data they currently seek.

"We're trying to look at a part of the spectrum that doesn't get through the atmosphere very well," Whittet said. "Earth's atmosphere, which contains a lot of moisture, absorbs most of the infrared radiation we want to detect. But SOFIA cruises at an altitude of about 40,000 feet, which is above almost all of the moisture, and allows us an unimpeded view of the stars."

Further, said Whittet, although two space-based instruments equipped with infrared absorption spectrometry capabilities -- NASA's Spitzer Space Telescope, and the Infrared Space Observatory, a European Space Agency satellite -- did take observations in that region, neither of them had the appropriate combination of resolution and sensitivity for the group's current work.

"There's really nothing else out there right now that could collect the data we need for this research," Whittet said.

The scientists were awarded 6.5 hours aboard SOFIA, time which may be used in one or several flights over the Pacific Ocean, and Whittet hopes he will be aboard for the observations. He said the scientists will likely publish findings from their research within a year after collecting the data.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute (RPI). Note: Materials may be edited for content and length.


Cite This Page:

Rensselaer Polytechnic Institute (RPI). "Airborne scientists search distant stars for complex organic molecules." ScienceDaily. ScienceDaily, 10 December 2012. <www.sciencedaily.com/releases/2012/12/121210160738.htm>.
Rensselaer Polytechnic Institute (RPI). (2012, December 10). Airborne scientists search distant stars for complex organic molecules. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2012/12/121210160738.htm
Rensselaer Polytechnic Institute (RPI). "Airborne scientists search distant stars for complex organic molecules." ScienceDaily. www.sciencedaily.com/releases/2012/12/121210160738.htm (accessed September 30, 2014).

Share This



More Space & Time News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
Water Discovery On Small Planet Could Be Key To Earth 2.0

Water Discovery On Small Planet Could Be Key To Earth 2.0

Newsy (Sep. 25, 2014) Scientists have discovered traces of water in the atmosphere of a distant, Neptune-sized planet. Video provided by Newsy
Powered by NewsLook.com
Raw: US-Russian Crew Lifts Off for Space Station

Raw: US-Russian Crew Lifts Off for Space Station

AP (Sep. 25, 2014) A U.S.-Russian space crew has blasted off successfully for the International Space Station. The Russian Soyuz-TMA14M spacecraft lifted off from the Russian-leased Baikonur launch facility in Kazakhstan. (Sept. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins