Featured Research

from universities, journals, and other organizations

Stress resilience, susceptibility traced to neurons in reward circuit

Date:
December 12, 2012
Source:
NIH/National Institute of Mental Health
Summary:
A specific pattern of neuronal firing in a brain reward circuit instantly rendered mice vulnerable to depression-like behavior induced by acute severe stress. The same firing pattern had the opposite effect when the depression-like behaviors were induced by chronic mild stress. Split-second control of the implicated circuit, via optogenetics, showed that context -- stressor type and intensity -- is pivotal to the workings of brain rapid antidepressant mechanisms.

Fiber optic stimulation mimicking high firing rates (vertical apparatus) of a key reward circuit hub (VTA) instantly converted genetically modified mice resilient to severe social stress into vulnerable animals. High firing rates in the circuit projection from VTA to NAc (and not from VTA to PFC) was found to be the main culprit in triggering depression related behaviors. Blocking the circuit in vulnerable mice instantly made them resilient.
Credit: Ming-Hu Han, Ph.D., Mount Sinai School of Medicine

A specific pattern of neuronal firing in a brain reward circuit instantly rendered mice vulnerable to depression-like behavior induced by acute severe stress, a study supported by the National Institutes of Health has found. When researchers used a high-tech method to mimic the pattern, previously resilient mice instantly succumbed to a depression-like syndrome of social withdrawal and reduced pleasure-seeking -- they avoided other animals and lost their sweet tooth. When the firing pattern was inhibited in vulnerable mice, they instantly became resilient.

"For the first time, we have shown that split-second control of specific brain circuitry can switch depression-related behavior on and off with flashes of an LED light," explained Ming-Hu Han, Ph.D., of the Mount Sinai School of Medicine, New York City, a grantee of NIH's National Institute of Mental Health (NIMH). "These results add to mounting clues about the mechanism of fast-acting antidepressant responses."

Han, Eric Nestler, M.D., Ph.D., of Mount Sinai, and colleagues, report on their study online, Dec. 12, 2012, in the journal Nature.

In a companion article, NIMH grantees Kay Tye, Ph.D., of the Massachusetts Institute of Technology, Cambridge, Mass., and Karl Deisseroth, M.D., Ph.D., of Stanford University, Stanford, Calif., used the same cutting-edge technique to control mouse brain activity in real time. Their study reveals that the same reward circuit neuronal activity pattern had the opposite effect when the depression-like behavior was induced by daily presentations of chronic, unpredictable mild physical stressors, instead of by shorter-term exposure to severe social stress.

Prior to the new studies, Han's team suspected that a telltale pattern -- rapid firing of neurons that secrete the chemical messenger dopamine in a key circuit hub -- makes an animal vulnerable to the depression-like effects of acute severe stress, and that slower firing supports resilience. But they lacked direct, real-time evidence.

To pinpoint cause-and-effect, they turned to a research technology pioneered by Deisseroth, called optogenetics. It melds fiber optics and genetic engineering to precisely control the activity of a specific brain circuit in a living, behaving animal. Genetically modified viruses are used to inject light-reactive proteins, borrowed from primitive organisms like algae, to make the circuitry similarly light-responsive.

The researchers had previously shown that neurons in the reward circuit hub deep in the brain, called the ventral tegmental area (VTA), fire at normal rates in social stress-resilient mice, but at high rates in social stress-susceptible mice. So they embedded an LED-lit optical fiber aimed at the VTA circuitry of genetically modified resilient mice to convert them into susceptible mice by triggering high firing rates.

Normally, it takes 10 days of repeated encounters with a dominant animal -- an experimental procedure called social defeat stress -- to induce depression-related behaviors. Even after that, some mice emerge seemingly unscathed. But these resilient animals -- in which the reward circuit had been genetically modified for optogenetic control -- instantly succumbed to a long-lasting depression-like syndrome after light pulses triggered neural activity mimicking the high firing rates seen in the susceptible animals.

In subsequent experiments, using similar optogenetic strategies, the researchers discovered that inhibiting the reward circuit activity pattern in stress-susceptible mice instantly converted them into stress-resilient animals. The reward circuit projects from the VTA to an area in the center front of the brain, called the nucleus accumbens. This study suggests that dopamine neurons firing at high rates in this specific circuit projection encode a signal for susceptibility to depression induced by acute, severe stress. By contrast, a circuit projection from the VTA to the prefrontal cortex, in the top front of the brain (see diagram), was found to serve an opposite function.

Depression in humans often stems from milder stressors over longer periods of time. Tye and Deisseroth used optogenetics to probe reward circuit workings related to depression-like behaviors in rodents exposed to stressors like white noise, crowded housing, or continuous darkness or illumination. Exposure to some of these milder stressors lasted 10 weeks, compared to the 10-days of social defeat stress.

"We sought to mimic gradual, stress-induced transitions to depressed-like states, as are often seen clinically," explained Deisseroth, who is a practicing psychiatrist as well as a neuroscientist.

In contrast to the Han-Nestler results after social defeat stress, following 10 weeks of unpredictable chronic mild stress, optogentically inducing high firing rates in VTA dopamine neurons instantly reversed such depression-like behaviors induced by chronic mild stressors -- and vice versa. Also opposite to the social defeat stress findings, optogenetically inhibiting VTA dopamine neurons induced depression-like states.

"The variable effects that stressors of different types induce in the dopamine system may point to the need for distinct treatment strategies for patients whose depressions stem from different types of experiences," said Tye, who is leading a research group studying the neural underpinnings of motivational and emotional processing.

When Tye and Deisseroth infused agents that block binding of the chemical messenger glutatmate in the nucleus accumbens, they produced an antidepressant response -- mice struggled more to escape the stressor. They note that this is consistent with the effects of the fast-acting antidepressant ketamine, which similarly blocks glutamate.

While optogenetics is providing insights into rapid antidepressant mechanisms, the technique is not suitable for treatment of depression in humans.

"These stunning demonstrations that depression-like states can literally be switched on and off underscore that context -- stressor type and intensity -- is pivotal in the workings of the neurons and circuit implicated," said NIMH Director Thomas R. Insel, M.D. "These new, precise circuit breakers are advancing our understanding of how specific brain pathways regulate behavior."


Story Source:

The above story is based on materials provided by NIH/National Institute of Mental Health. Note: Materials may be edited for content and length.


Journal References:

  1. Dipesh Chaudhury, Jessica J. Walsh, Allyson K. Friedman, Barbara Juarez, Stacy M. Ku, Ja Wook Koo, Deveroux Ferguson, Hsing-Chen Tsai, Lisa Pomeranz, Daniel J. Christoffel, Alexander R. Nectow, Mats Ekstrand, Ana Domingos, Michelle S. Mazei-Robison, Ezekiell Mouzon, Mary Kay Lobo, Rachael L. Neve, Jeffrey M. Friedman, Scott J. Russo, Karl Deisseroth, Eric J. Nestler, Ming-Hu Han. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature, 2012; DOI: 10.1038/nature11713
  2. Kay M. Tye, Julie J. Mirzabekov, Melissa R. Warden, Emily A. Ferenczi, Hsing-Chen Tsai, Joel Finkelstein, Sung-Yon Kim, Avishek Adhikari, Kimberly R. Thompson, Aaron S. Andalman, Lisa A. Gunaydin, Ilana B. Witten, Karl Deisseroth. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature, 2012; DOI: 10.1038/nature11740

Cite This Page:

NIH/National Institute of Mental Health. "Stress resilience, susceptibility traced to neurons in reward circuit." ScienceDaily. ScienceDaily, 12 December 2012. <www.sciencedaily.com/releases/2012/12/121212162717.htm>.
NIH/National Institute of Mental Health. (2012, December 12). Stress resilience, susceptibility traced to neurons in reward circuit. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/12/121212162717.htm
NIH/National Institute of Mental Health. "Stress resilience, susceptibility traced to neurons in reward circuit." ScienceDaily. www.sciencedaily.com/releases/2012/12/121212162717.htm (accessed October 21, 2014).

Share This



More Mind & Brain News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Court Ruling Means Kids' Online Activity Could Be On Parents

Court Ruling Means Kids' Online Activity Could Be On Parents

Newsy (Oct. 17, 2014) In a ruling attorneys for both sides agreed was a first of its kind, a Georgia appeals court said parents can be held liable for what kids put online. Video provided by Newsy
Powered by NewsLook.com
The Best Foods To Boost Your Mood

The Best Foods To Boost Your Mood

Buzz60 (Oct. 17, 2014) Feeling down? Reach for the refrigerator, not the medicine cabinet! TC Newman (@PurpleTCNewman) shares some of the best foods to boost your mood. Video provided by Buzz60
Powered by NewsLook.com
You Can Get Addicted To Google Glass, Apparently

You Can Get Addicted To Google Glass, Apparently

Newsy (Oct. 15, 2014) Researchers claim they’ve diagnosed the first example of the disorder in a 31-year-old U.S. Navy serviceman. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Researchers Induce, Relieve Depression Symptoms in Mice With Light

Dec. 12, 2012 Researchers have successfully induced and relieved depression-like deficiencies in both pleasure and motivation in mice by controlling just a single area of the brain known as the ventral tegmental ... read more

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins