Featured Research

from universities, journals, and other organizations

Light used to remotely trigger biochemical reactions

Date:
December 13, 2012
Source:
Rice University
Summary:
Since Edison's first bulb, heat has been a mostly undesirable byproduct of light. Now researchers are turning light into heat at the point of need, on the nanoscale, to trigger biochemical reactions remotely on demand. The method makes use of materials derived from unique microbes -- thermophiles -- that thrive at high temperatures but shut down at room temperature.

Chemical processes can be activated by light without the need for bulk heating of a material through a process developed by researchers at Rice University. The technique involves coating nanorods with thermophilic enzymes that are activated at high temperatures. Lighting the plasmonic gold nanorod causes highly localized heating and activates the enzyme.
Credit: Lori Pretzer/Rice University

Since Edison's first bulb, heat has been a mostly undesirable byproduct of light. Now researchers at Rice University are turning light into heat at the point of need, on the nanoscale, to trigger biochemical reactions remotely on demand.

Related Articles


The method created by the Rice labs of Michael Wong, Ramon Gonzalez and Naomi Halas and reported today in the American Chemical Society journal ACS Nano makes use of materials derived from unique microbes -- thermophiles -- that thrive at high temperatures but shut down at room temperature.

The Rice project led by postdoctoral fellow Matthew Blankschien and graduate student Lori Pretzer combines enzymes from these creatures with plasmonic gold nanoparticles that heat up when exposed to near-infrared light. That activates the enzymes, which are then able to carry out their functions.

This effectively allows chemical processes to happen at lower temperatures. Because heating occurs only where needed -- at the surface of the nanoparticle, where it activates the enzyme -- the environment stays cooler.

Blankschien thinks that's fascinating.

"Basically, we're getting the benefits of high-temperature manufacturing without needing a high-temperature environment," said Blankschien, who won the Peter and Ruth Nicholas Postdoctoral Fellowship two years ago to work on these ideas. "The challenge was to keep the higher temperature at the nanoparticle, where the enzyme is activated, from affecting the environment around it."

The technique holds great potential for industrial processes that now require heat or benefit from remote triggering with light.

"The implications are pretty exciting," said Wong, a professor of chemical and biomolecular engineering and of chemistry. "In the chemical industry, there's always a need for better catalytic materials so they can run reactions more inexpensively, more 'green' and more sustainably. You shouldn't run through gallons of solvent to make a milligram of product, even if you happen to be able to sell it for a lot of money."

For industry, the potential energy savings alone may make the Rice process worth investigating. "Here we're using 'free' energy," Wong said. "Instead of needing a big boiler to produce steam, you turn on an energy-efficient light bulb, like an LED. Or open a window."

The particle at the center of the process is a gold nanorod about 10 nanometers wide and 30 long that heats up when hit with near-infrared light from a laser. The rods are just the right size and shape to react to light at around 800 nanometers. The light excites surface plasmons that ripple like water in a pool, in this case emitting energy as heat.

Halas' Rice lab is famous for pioneering the use of gold nanoshells (a related material) to treat cancer by targeting tumors with particles that are bulk heated to kill tumors from the inside. The therapy is now in human trials.

The new research takes a somewhat different tack by heating nanoparticles draped with a model thermophilic enzyme, glucokinase, from Aeropyrum pernix. A. pernix is a microbe discovered in 1996 thriving near hot underwater vents off the coast of Japan. At around 176 degrees Fahrenheit, A. pernix degrades glucose, a process necessary to nearly every living thing. The enzyme can be heated and cooled repeatedly.

In their experiments, Blankschien and Pretzer cloned, purified and altered glucokinase enzymes so they would attach to the gold nanoparticles. The enzyme/nanoparticle complexes were then suspended in a solution and tested for glucose degradation. When the solution was heated in bulk, they found the complexes became highly active at 176 degrees, as expected.

Then the complexes were encapsulated in a gel-like bead of calcium alginate, which helps keeps the heat in but is porous enough to allow enzymes to react with materials around it. Under bulk heating, the enzymes' performance dropped dramatically because the beads insulated the enzymes too well.

But when encapsulated complexes were illuminated by continuous, near-infrared laser light, they worked substantially better than under bulk heating while leaving the solution at near-room temperature. The researchers found the complexes robust enough for weeks of reuse.

"As far-fetched as it sounds, I think chemical companies will be interested in the idea of using light to make chemicals," Wong said. "They're always interested in new technologies that can help make chemical products more cheaply."

He sees other possible uses for the new approach in the production of fuels from degradation of biomass like lignocellulose; for drug manufacture on demand -- maybe from nanoparticle-infused tattoos on the body; or even for lowering blood sugar concentrations as a different way to manage diabetes.

"That we can now make these particles is great," Wong said. "The next exciting part is in thinking about how we can deploy them."

Ryan Huschka, a co-author of the paper, is a former Rice graduate student and now an assistant professor of chemistry at Newman University. Halas is the Stanley C. Moore Professor in Electrical and Computer Engineering, a professor of biomedical engineering, chemistry, physics and astronomy and director of Rice's Laboratory for Nanophotonics. Gonzales is an associate professor of chemical and biomolecular engineering and also of bioengineering

The research was supported by the Peter and Ruth Nicholas Postdoctoral Fellowship Program administered by the Richard E. Smalley Institute for Nanoscale Science and Technology, the Rice University Institute of Biosciences and Bioengineering Hamill Innovations Award Program, the Rice University Faculty Initiatives Fund, the Robert A. Welch Foundation, the National Security Science and Engineering Faculty Fellowship, the Defense Threat Reduction Agency, the Air Force Office of Scientific Research and the National Science Foundation.


Story Source:

The above story is based on materials provided by Rice University. The original article was written by Mike Williams. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthew D. Blankschien, Lori A. Pretzer, Ryan Huschka, Naomi J. Halas, Ramon Gonzalez, Michael S. Wong. Light-Triggered Biocatalysis Using Thermophilic Enzyme–Gold Nanoparticle Complexes. ACS Nano, 2012; 121213083124000 DOI: 10.1021/nn3048445

Cite This Page:

Rice University. "Light used to remotely trigger biochemical reactions." ScienceDaily. ScienceDaily, 13 December 2012. <www.sciencedaily.com/releases/2012/12/121213172344.htm>.
Rice University. (2012, December 13). Light used to remotely trigger biochemical reactions. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2012/12/121213172344.htm
Rice University. "Light used to remotely trigger biochemical reactions." ScienceDaily. www.sciencedaily.com/releases/2012/12/121213172344.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com
3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

Buzz60 (Oct. 23, 2014) New York City officials announce a new technology initiative for the NYPD. Tim Minton reports smartphones and tablets will be given to more than 40,000 NYPD officers and detectives in an effort to change the way they perform their duties. Video provided by Buzz60
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins