Featured Research

from universities, journals, and other organizations

New targets for drugs to defeat aggressive brain tumor

Date:
December 14, 2012
Source:
University of Pittsburgh Schools of the Health Sciences
Summary:
Researchers have identified over 125 genetic components in a chemotherapy-resistant, brain tumor-derived cell line, which could offer new hope for drug treatment to destroy the cancer cells. The potential drug targets were identified after testing more than 5,000 genes derived from glioblastoma multiforme.

University of Pittsburgh Cancer Institute (UPCI) researchers have identified over 125 genetic components in a chemotherapy-resistant, brain tumor-derived cell line, which could offer new hope for drug treatment to destroy the cancer cells.

The results will be reported in the cover story of December's issue of the journal Molecular Cancer Research, to be published Dec. 18 and currently available online.

The potential drug targets were identified after testing more than 5,000 genes derived from glioblastoma multiforme, an aggressive brain tumor. The genes were evaluated for their role in responding to the chemotherapy drug temozolomide.

"The current standard of care for people with this type of cancer is to remove as much of the tumor as possible, and then treat with radiation and temozolomide," said lead author David Svilar, Ph.D., a student in the Medical Scientist Training Program at the University of Pittsburgh School of Medicine. "However, glioblastoma multiforme is highly resistant to this chemotherapy drug, so we need to find better treatments to improve the patient survival rate."

According to the National Cancer Institute, glioblastoma multiforme is the most common type of brain tumor in adults. It accounts for about 15 percent of all brain tumors, and typically occurs in people between the ages of 45 and 70 years.

Patients with glioblastoma multiforme usually survive less than 15 months after diagnosis, and there are no effective long-term treatments for the disease.

Temozolomide, also known by the brand name Temodar, works by modifying the cancer's DNA in a way that triggers cell death. It has been approved by the U.S. Food and Drug Administration for use in brain tumors and is in clinical trials for other cancers, such as melanoma and leukemia. It is well-tolerated in most patients.

"Unfortunately, some cancers -- particularly glioblastoma multiforme -- are able to repair the DNA damage done to the tumor by Temozolomide before the cancer cells are destroyed," said senior author Robert W. Sobol, Ph.D., a scientist at UPCI and an associate professor in the departments of Pharmacology & Chemical Biology and Human Genetics. "Clinical trials are underway to test drugs and chemotherapy dosing schedules to inhibit this repair, but none have proven effective to date."

Dr. Sobol and his colleagues identified multiple "druggable" targets that could make the cancer more sensitive to temozolomide, as well as the processes that allow the tumor to survive the onslaught of surgery, radiation and chemotherapy.

"Our hope is that drug companies will use our findings to develop adjuvant chemotherapy drugs that will vastly improve patient survival from this deadly cancer," said Dr. Sobol.

This research was supported by grants from the National Brain Tumor Society and National Institutes of Health (GM087798, CA148629 and ES019498) and a NYSTAR James Watson Award.

Co-authors include Madhu Dyavaiah, Ph.D., and Thomas J. Begley, Ph.D., both of the University at Albany; Ashley R. Brown, Jiang-bo Tang, Ph.D., Jianfeng Li, Ph.D., Peter McDonald, Ph.D., Tong Ying Shun, Andrea Braganza, Xiao-hong Wang, Salony Maniar, Claudette M. St Croix, Ph.D., John S. Lazo, Ph.D., and Ian F. Pollack, M.D., all of the University of Pittsburgh.


Story Source:

The above story is based on materials provided by University of Pittsburgh Schools of the Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Svilar, M. Dyavaiah, A. R. Brown, J.-b. Tang, J. Li, P. R. McDonald, T. Y. Shun, A. Braganza, X.-h. Wang, S. Maniar, C. M. S. Croix, J. S. Lazo, I. F. Pollack, T. J. Begley, R. W. Sobol. Alkylation Sensitivity Screens Reveal a Conserved Cross-species Functionome. Molecular Cancer Research, 2012; DOI: 10.1158/1541-7786.MCR-12-0168

Cite This Page:

University of Pittsburgh Schools of the Health Sciences. "New targets for drugs to defeat aggressive brain tumor." ScienceDaily. ScienceDaily, 14 December 2012. <www.sciencedaily.com/releases/2012/12/121214102702.htm>.
University of Pittsburgh Schools of the Health Sciences. (2012, December 14). New targets for drugs to defeat aggressive brain tumor. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2012/12/121214102702.htm
University of Pittsburgh Schools of the Health Sciences. "New targets for drugs to defeat aggressive brain tumor." ScienceDaily. www.sciencedaily.com/releases/2012/12/121214102702.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins