Featured Research

from universities, journals, and other organizations

New targets for drugs to defeat aggressive brain tumor

Date:
December 14, 2012
Source:
University of Pittsburgh Schools of the Health Sciences
Summary:
Researchers have identified over 125 genetic components in a chemotherapy-resistant, brain tumor-derived cell line, which could offer new hope for drug treatment to destroy the cancer cells. The potential drug targets were identified after testing more than 5,000 genes derived from glioblastoma multiforme.

University of Pittsburgh Cancer Institute (UPCI) researchers have identified over 125 genetic components in a chemotherapy-resistant, brain tumor-derived cell line, which could offer new hope for drug treatment to destroy the cancer cells.

Related Articles


The results will be reported in the cover story of December's issue of the journal Molecular Cancer Research, to be published Dec. 18 and currently available online.

The potential drug targets were identified after testing more than 5,000 genes derived from glioblastoma multiforme, an aggressive brain tumor. The genes were evaluated for their role in responding to the chemotherapy drug temozolomide.

"The current standard of care for people with this type of cancer is to remove as much of the tumor as possible, and then treat with radiation and temozolomide," said lead author David Svilar, Ph.D., a student in the Medical Scientist Training Program at the University of Pittsburgh School of Medicine. "However, glioblastoma multiforme is highly resistant to this chemotherapy drug, so we need to find better treatments to improve the patient survival rate."

According to the National Cancer Institute, glioblastoma multiforme is the most common type of brain tumor in adults. It accounts for about 15 percent of all brain tumors, and typically occurs in people between the ages of 45 and 70 years.

Patients with glioblastoma multiforme usually survive less than 15 months after diagnosis, and there are no effective long-term treatments for the disease.

Temozolomide, also known by the brand name Temodar, works by modifying the cancer's DNA in a way that triggers cell death. It has been approved by the U.S. Food and Drug Administration for use in brain tumors and is in clinical trials for other cancers, such as melanoma and leukemia. It is well-tolerated in most patients.

"Unfortunately, some cancers -- particularly glioblastoma multiforme -- are able to repair the DNA damage done to the tumor by Temozolomide before the cancer cells are destroyed," said senior author Robert W. Sobol, Ph.D., a scientist at UPCI and an associate professor in the departments of Pharmacology & Chemical Biology and Human Genetics. "Clinical trials are underway to test drugs and chemotherapy dosing schedules to inhibit this repair, but none have proven effective to date."

Dr. Sobol and his colleagues identified multiple "druggable" targets that could make the cancer more sensitive to temozolomide, as well as the processes that allow the tumor to survive the onslaught of surgery, radiation and chemotherapy.

"Our hope is that drug companies will use our findings to develop adjuvant chemotherapy drugs that will vastly improve patient survival from this deadly cancer," said Dr. Sobol.

This research was supported by grants from the National Brain Tumor Society and National Institutes of Health (GM087798, CA148629 and ES019498) and a NYSTAR James Watson Award.

Co-authors include Madhu Dyavaiah, Ph.D., and Thomas J. Begley, Ph.D., both of the University at Albany; Ashley R. Brown, Jiang-bo Tang, Ph.D., Jianfeng Li, Ph.D., Peter McDonald, Ph.D., Tong Ying Shun, Andrea Braganza, Xiao-hong Wang, Salony Maniar, Claudette M. St Croix, Ph.D., John S. Lazo, Ph.D., and Ian F. Pollack, M.D., all of the University of Pittsburgh.


Story Source:

The above story is based on materials provided by University of Pittsburgh Schools of the Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Svilar, M. Dyavaiah, A. R. Brown, J.-b. Tang, J. Li, P. R. McDonald, T. Y. Shun, A. Braganza, X.-h. Wang, S. Maniar, C. M. S. Croix, J. S. Lazo, I. F. Pollack, T. J. Begley, R. W. Sobol. Alkylation Sensitivity Screens Reveal a Conserved Cross-species Functionome. Molecular Cancer Research, 2012; DOI: 10.1158/1541-7786.MCR-12-0168

Cite This Page:

University of Pittsburgh Schools of the Health Sciences. "New targets for drugs to defeat aggressive brain tumor." ScienceDaily. ScienceDaily, 14 December 2012. <www.sciencedaily.com/releases/2012/12/121214102702.htm>.
University of Pittsburgh Schools of the Health Sciences. (2012, December 14). New targets for drugs to defeat aggressive brain tumor. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2012/12/121214102702.htm
University of Pittsburgh Schools of the Health Sciences. "New targets for drugs to defeat aggressive brain tumor." ScienceDaily. www.sciencedaily.com/releases/2012/12/121214102702.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com
AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

Newsy (Mar. 5, 2015) AbbVie announced Wednesday it will buy cancer drugmaker Pharmacyclics in a $21 billion deal. Video provided by Newsy
Powered by NewsLook.com
Toddlers Drinking Coffee? Why You Shouldn't Share Your Joe

Toddlers Drinking Coffee? Why You Shouldn't Share Your Joe

Newsy (Mar. 5, 2015) A survey of Boston mothers and toddlers found that 15 percent of two-year-olds drink coffee and 2.5 percent of 1-year-olds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins