Featured Research

from universities, journals, and other organizations

Hypertension traced to source in brain, triggering new paradigm for hypertension treatment

Date:
December 17, 2012
Source:
Cornell University
Summary:
A new study traces hypertension to a newfound cellular source in the brain and shows that treatments targeting this area can reverse the disease.

When the heart works too hard, the brain may be to blame, says new Cornell University research that is changing how scientists look at high blood pressure (hypertension). The study, published in the Journal of Clinical Investigation in November, traces hypertension to a newfound cellular source in the brain and shows that treatments targeting this area can reverse the disease.

Related Articles


In what peer reviewers are calling "a new paradigm" for tackling the worldwide hypertension epidemic, this insight into its roots could give hope to the billion people it currently afflicts. Hypertension occurs when the force of blood against vessel walls grows strong enough to potentially cause such problems as heart attack, stroke and heart or kidney disease. The heart pumps harder, and often the hormone angiotensin-II (AngII) gets the pressure cooking by triggering nerve cells that constrict blood vessels.

"We knew the central nervous system orchestrates this process, and now we've found the conductor," said Robin Davisson, a professor of molecular physiology with a joint appointment at Cornell's College of Veterinary Medicine and Weill Cornell Medical College.

Two-thirds of Americans have hypertension, which is the leading cause of North America's No. 1 killer: heart disease, according to the Centers for Disease Control and Prevention.

Davisson's lab traced neurochemical signals back to endoplasmic reticulum (ER), the protein factory and stress-management control center in every cell. If something goes wrong in a cell, the ER activates processes to adapt to the stress. Long-term ER stress can cause chronic disease, and several stressors that ER responds to have been connected to hypertension. Davisson's lab found that high levels of AngII put stress on the ER, which responds by triggering the cascade of neural and hormonal signals that start hypertension.

But not just any cell's ER can conduct this complex orchestra. Those that can trigger the signal cascade are clustered near the bottom of the brain in a gate-like structure called the subfornical organ (SFO). Unlike most of the brain, the SFO hangs outside a protective barrier that keeps most circulating particles from entering the brain. The SFO can interact with particles like AngII that are too big to cross through and can also communicate with the brain's inner chambers.

This is good news for developing therapies -- because the SFO sits outside the barrier, it can be reached through such normal treatment routes as pills or injections rather than riskier brain procedures. Davisson's lab showed that treatments that inhibit ER stress in the SFO can completely stop AngII-based hypertension and lower blood pressure to normal levels.

"Our work provides the first evidence that higher levels of AngII cause ER stress in the SFO, that this causes hypertension, and that we can do something about it," said Davisson. "This finding may also suggest a role for ER stress in hypertension types that don't involve AngII, like some spontaneous or genetic forms."

Inspired by the paradigm shift that this study has sparked, the editors of the Journal of Clinical Investigation published a commentary concluding that this discovery "opens new avenues for investigation and may lead to new therapeutic approaches for this disease."


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Colin N. Young, Xian Cao, Mallikarjuna R. Guruju, Joseph P. Pierce, Donald A. Morgan, Gang Wang, Costantino Iadecola, Allyn L. Mark, Robin L. Davisson. ER stress in the brain subfornical organ mediates angiotensin-dependent hypertension. Journal of Clinical Investigation, 2012; 122 (11): 3960 DOI: 10.1172/JCI64583

Cite This Page:

Cornell University. "Hypertension traced to source in brain, triggering new paradigm for hypertension treatment." ScienceDaily. ScienceDaily, 17 December 2012. <www.sciencedaily.com/releases/2012/12/121217170950.htm>.
Cornell University. (2012, December 17). Hypertension traced to source in brain, triggering new paradigm for hypertension treatment. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2012/12/121217170950.htm
Cornell University. "Hypertension traced to source in brain, triggering new paradigm for hypertension treatment." ScienceDaily. www.sciencedaily.com/releases/2012/12/121217170950.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com
HIV Outbreak Prompts Public Health Emergency In Indiana

HIV Outbreak Prompts Public Health Emergency In Indiana

Newsy (Mar. 26, 2015) Indiana Gov. Mike Pence says he will bring additional state resources to help stop the epidemic. Video provided by Newsy
Powered by NewsLook.com
Indiana Permits Needle Exchange as HIV Cases Skyrocket

Indiana Permits Needle Exchange as HIV Cases Skyrocket

Reuters - US Online Video (Mar. 26, 2015) Governor Mike Pence declares the recent HIV outbreak in rural Indiana a "public health emergency" and authorizes a short-term needle-exchange program. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins