Featured Research

from universities, journals, and other organizations

Brake on nerve cell activity after seizures discovered; Gene expression initiates protective electrical response

Date:
December 19, 2012
Source:
University of Texas Health Science Center at San Antonio
Summary:
Selected genes get switched on during and after a seizure, sending signals to reduce uncontrolled firing of nerve cells. A medication that amplifies this response could prevent recurrent seizures and onset of epilepsy.

Given that epilepsy impacts more than 2 million Americans, there is a pressing need for new therapies to prevent this disabling neurological disorder. New findings from the neuroscience laboratory of Mark S. Shapiro, Ph.D., at The University of Texas Health Science Center at San Antonio, published Dec. 20 in the journal Neuron, may provide hope.

"A large fraction of epilepsy sufferers cannot take drugs for their disorder or the existing drugs do not manage it," said Dr. Shapiro, professor of physiology in the School of Medicine. "As a result, many opt for surgery to remove the hippocampus, a part of the brain where memories are stored but also where seizures are often localized. The heart-wrenching choice is between their memories and the epilepsy."

Genes go into action

A major finding of the study is that selected genes get switched on during and after a seizure, sending swarms of signals to reduce uncontrolled firing of nerve cells. A medication that amplifies this response after a person's initial seizure could thus prevent recurrent seizures and the onset of devastating epilepsy.

Uncontrolled electrical activity by specialized electricity-producing proteins in the brain called "ion channels" triggers epileptic seizures. One in 10 people have a lifetime risk of suffering a seizure, which can occur for a variety of reasons including traumatic brain injury, stroke or drug overdoses.

A powerful brake

Although not all seizures lead to epilepsy, some trigger changes in the brain that heighten the risk of the disorder. Dr. Shapiro's research sheds light on why most isolated seizures do not lead to full-blown epilepsy, whereas others do. An ion channel called the "M-channel" acts as a powerful "brake" on hyper-excitability in the brain. Another organizational protein, called AKAP79, acting much like an air-traffic controller, calls in more M channels as part of neuroprotective response machinery.

Pharmacological therapy to enhance M-channel gene expression or AKAP79 function "could jump-start this neuroprotective mechanism to prevent a seizure from turning into epilepsy," Dr. Shapiro said. "Administering it right after a traumatic brain injury could be very effective."

It was not known that electrical activity could regulate M-channel genes, Dr. Shapiro said. Nor was it known that the AKAP79 organizer protein, which coordinates many aspects of M-channel function, could turn on their genes in a person's DNA. By increasing M-channel expression in the brain, uncontrolled electrical firing of nerve cells in the brain is sharply controlled.

Mouse experiments

The Shapiro lab team records electrical currents and performs imaging in living nerve cells to measure M-channel activity. This study included inducing seizures in healthy mice. After a seizure, gene expression of M-channels in the hippocampus increased more than 10-fold within 24 hours, Dr. Shapiro said. This protective effect was completely absent in mice lacking the mouse version of the AKAP79 gene.

"Because excessive firing of nerve cells is also involved in chronic pains, such as migraines, mood disorders and hypertension, increasing M-channel signals to reduce nerve-cell firing could also likely be effective in treating those conditions," Dr. Shapiro said.

This is only the second research paper from The University of Texas Health Science Center at San Antonio to be published by Neuron since 1996.

This work was supported in part by grants from the National Institutes of Health, National Institute of Neurological Diseases and Stroke, NS065138 and NS043394, to Mark S. Shapiro, Ph.D., principal investigator.


Story Source:

The above story is based on materials provided by University of Texas Health Science Center at San Antonio. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jie Zhang, MarkS. Shapiro. Activity-Dependent Transcriptional Regulation of M-Type (Kv7) K+ Channels by AKAP79/150-Mediated NFAT Actions. Neuron, 2012; 76 (6): 1133 DOI: 10.1016/j.neuron.2012.10.019

Cite This Page:

University of Texas Health Science Center at San Antonio. "Brake on nerve cell activity after seizures discovered; Gene expression initiates protective electrical response." ScienceDaily. ScienceDaily, 19 December 2012. <www.sciencedaily.com/releases/2012/12/121219133340.htm>.
University of Texas Health Science Center at San Antonio. (2012, December 19). Brake on nerve cell activity after seizures discovered; Gene expression initiates protective electrical response. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2012/12/121219133340.htm
University of Texas Health Science Center at San Antonio. "Brake on nerve cell activity after seizures discovered; Gene expression initiates protective electrical response." ScienceDaily. www.sciencedaily.com/releases/2012/12/121219133340.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins