Featured Research

from universities, journals, and other organizations

Research offers new targets for stroke treatments

Date:
December 20, 2012
Source:
University of Georgia
Summary:
New research identifies the mechanisms responsible for regenerating blood vessels in the brain. Looking for ways to improve outcomes for stroke patients, researchers used candesartan, a commonly prescribed medication for lowering blood pressure, to identify specific growth factors in the brain responsible for recovery after a stroke.

New research from the University of Georgia identifies the mechanisms responsible for regenerating blood vessels in the brain.

Looking for ways to improve outcomes for stroke patients, researchers led by the UGA College of Pharmacy assistant dean for clinical programs Susan Fagan used candesartan, a commonly prescribed medication for lowering blood pressure, to identify specific growth factors in the brain responsible for recovery after a stroke.

The results were published online Dec. 4 in the Journal of Pharmacology and Experimental Therapeutics.

Although candesartan has been shown to protect the brain after a stroke, its use is generally avoided because lowering a person's blood pressure quickly after a stroke can cause problems-like decreasing much-needed oxygen to the brain-during the critical period of time following a stroke.

"The really unique thing we found is that candesartan can increase the secretion of brain derived neurotrophic factor, and the effect is separate from the blood pressure lowering effect," said study coauthor Ahmed Alhusban, who is a doctoral candidate in the College of Pharmacy. "This will support a new area for treatments of stroke and other brain injury."

Alhusban and Fagan worked with Anna Kozak, a research scientist in the college, and Adviye Ergul, a professor and director of the physiology graduate program at Georgia Health Sciences University. They are the first to show that the positive effects of candesartan on brain blood vessel growth are caused by brain derived neurotrophic factor, or BDNF.

The research shows that when candesartan blocks the angiotensin II type 1 receptor, which lowers blood pressure, it stimulates the AT2 receptor and increases the secretion of BDNF, which encourages brain repair through the growth of new blood vessels.

"BDNF is a key player in learning and memory," said Fagan, the Albert W. Jowdy Professor. "A reduction of BDNF in the brain has been associated with Alzheimer's disease and depression, so increasing this growth factor with a common medication is exciting."

AT2 is a brain receptor responsible for angiogenesis, or the growth of new blood vessels from pre-existing vessels. Angiogenesis is a normal and vital process in human growth and development-as well as in healing.

For the study, the investigators used both living rat models and human brain cells. Groups were treated with either a low or high dose of angiotensin II alone or in combination with a dose of candesartan. Candesartan promoted angiogenesis, but this effect was entirely prevented by blocking BDNF or inactivating the AT2 receptor. This method identified the involvement of the AT2 receptor in BDNF secretion.

"This target is a key to enhance recovery and reduce the subsequent disability in stroke victims," said Alhusban. "We know angiogenesis proteins are upregulated in the week after a brain injury. Stimulation of the AT2 receptor with a medication is likely to enhance this part of the brain's own recovery mechanisms."

Medications proven to kick-start BDNF will not only benefit stroke victims but could have a role in other brain injury, particularly veterans with combat-related traumatic brain injuries.

There are currently medications in development activating the AT2 receptor as a mechanism for brain protection, but drug development will take five to 10 years before such a therapy is available to the public.

The research was funded by grants from the National Institutes of Health's National Institute of Neurological Disorders and Stroke and Veterans Affairs Merit Review and a pre-doctoral fellowship from the Jordan University of Science and Technology.


Story Source:

The above story is based on materials provided by University of Georgia. The original article was written by April Reese Sorrow. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Alhusban, A. Kozak, A. Ergul, S. C. Fagan. AT1 receptor antagonism is proangiogenic in the brain: BDNF a novel mediator. Journal of Pharmacology and Experimental Therapeutics, 2012; DOI: 10.1124/jpet.112.197483

Cite This Page:

University of Georgia. "Research offers new targets for stroke treatments." ScienceDaily. ScienceDaily, 20 December 2012. <www.sciencedaily.com/releases/2012/12/121220143734.htm>.
University of Georgia. (2012, December 20). Research offers new targets for stroke treatments. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/12/121220143734.htm
University of Georgia. "Research offers new targets for stroke treatments." ScienceDaily. www.sciencedaily.com/releases/2012/12/121220143734.htm (accessed July 31, 2014).

Share This




More Mind & Brain News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dieting At A Young Age Might Lead To Harmful Health Habits

Dieting At A Young Age Might Lead To Harmful Health Habits

Newsy (July 30, 2014) Researchers say women who diet at a young age are at greater risk of developing harmful health habits, including eating disorders and alcohol abuse. Video provided by Newsy
Powered by NewsLook.com
It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins