Featured Research

from universities, journals, and other organizations

Excessive protein synthesis linked to autistic-like behaviors, neuroscientists find

Date:
December 23, 2012
Source:
New York University
Summary:
Autistic-like behaviors can be partially remedied by normalizing excessive levels of protein synthesis in the brain, a team of researchers has found in a study of laboratory mice. The findings provide a pathway to the creation of pharmaceuticals aimed at treating autism spectrum disorders (ASD) that are associated with diminished social interaction skills, impaired communication ability, and repetitive behaviors.

Autistic-like behaviors can be partially remedied by normalizing excessive levels of protein synthesis in the brain, a team of researchers has found in a study of laboratory mice. The findings, which appear in the latest issue of Nature, provide a pathway to the creation of pharmaceuticals aimed at treating autism spectrum disorders (ASD) that are associated with diminished social interaction skills, impaired communication ability, and repetitive behaviors.

"The creation of a drug to address ASD will be difficult, but these findings offer a potential route to get there," said Eric Klann, a professor at NYU's Center for Neural Science and the study's senior author. "We have not only confirmed a common link for several such disorders, but also have raised the exciting possibility that the behavioral afflictions of those individuals with ASD can be addressed."

The study's other co-authors included researchers from the University of California, San Francisco (UCSF) and three French institutions: Aix-Marseille Universite'; Institut National de la Santé et de la Recherche Médicale (INSERM); and Le Centre National de la Recherche Scientifique (CNRS).

The researchers focused on the EIF4E gene, whose mutation is associated with autism. The mutation causing autism was proposed to increase levels of the eIF4E, the protein product of EIF4E, and lead to exaggerated protein synthesis. Excessive eIF4E signaling and exaggerated protein synthesis also may play a role in a range of neurological disorders, including fragile X syndrome (FXS).

In their experiments, the researchers examined mice with increased levels of eIF4E. They found that these mice had exaggerated levels of protein synthesis in the brain and exhibited behaviors similar to those found in autistic individuals -- repetitive behaviors, such as repeatedly burying marbles, diminished social interaction (the study monitored interactions with other mice), and behavioral inflexibility (the afflicted mice were unable to navigate mazes that had been slightly altered from ones they had previously solved). The researchers also found altered communication between neurons in brain regions linked to the abnormal behaviors.

To remedy to these autistic-like behaviors, the researchers then tested a drug, 4EGI-1, which diminishes protein synthesis induced by the increased levels of eIF4E. Through this drug, they hypothesized that they could return the afflicted mice's protein production to normal levels, and, with it, reverse autistic-like behaviors.

The subsequent experiments confirmed their hypotheses. The mice were less likely to engage in repetitive behaviors, more likely to interact with other mice, and were successful in navigating mazes that differed from those they previously solved, thereby showing enhanced behavioral flexibility. Additional investigation revealed that these changes were likely due to a reduction in protein production -- the levels of newly synthesized proteins in the brains of these mice were similar to those of normal mice.

"These findings highlight an invaluable mouse model for autism in which many drugs that target eIF4E can be tested," added co-author Davide Ruggero, an associate professor at UCSF's School of Medicine and Department of Urology. "These include novel compounds that we are developing to target eIF4E hyperactivation in cancer that may also be potentially therapeutic for autistic patients."

The study's other co-authors were: Emanuela Santini, the study's lead author, Thu Huynh, Andrew MacAskill, Adam Carter, and Hanoch Kaphzan of NYU's Center for Neural Science; and Philippe Pierre of Aix-Marseille Université, INSERM, and CNRS.

The research was supported by grants from the National Institutes of Health (NS034007, NS047384, NS078718, and CA154916), a Department of Defense Congressionally Directed Medical Research Program award (W81XWH-11-1-0389), and the Wellcome Trust.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Emanuela Santini, Thu N. Huynh, Andrew F. MacAskill, Adam G. Carter, Philippe Pierre, Davide Ruggero, Hanoch Kaphzan, Eric Klann. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature, 2012; DOI: 10.1038/nature11782

Cite This Page:

New York University. "Excessive protein synthesis linked to autistic-like behaviors, neuroscientists find." ScienceDaily. ScienceDaily, 23 December 2012. <www.sciencedaily.com/releases/2012/12/121223152410.htm>.
New York University. (2012, December 23). Excessive protein synthesis linked to autistic-like behaviors, neuroscientists find. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2012/12/121223152410.htm
New York University. "Excessive protein synthesis linked to autistic-like behaviors, neuroscientists find." ScienceDaily. www.sciencedaily.com/releases/2012/12/121223152410.htm (accessed September 3, 2014).

Share This



More Mind & Brain News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) — New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) — Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) — Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) — A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins